File size: 6,805 Bytes
1809ff7
 
d057bd6
5a73c01
85b90d6
 
7226d21
 
04cf10d
5a73c01
ad8b9b4
 
85b90d6
 
1809ff7
7226d21
 
85b90d6
 
7226d21
85b90d6
 
1809ff7
 
 
 
 
 
 
85b90d6
ad8b9b4
04cf10d
85b90d6
 
 
 
 
 
18ed61d
 
 
 
 
 
 
 
 
 
 
c995ecb
18ed61d
 
 
 
 
2f6c159
18ed61d
 
 
2f6c159
 
 
 
 
 
 
 
 
 
 
f68cd88
 
 
 
 
 
 
 
 
 
2f6c159
 
 
 
 
 
591d872
2f6c159
 
 
 
bb75b27
 
 
 
5df5961
18ed61d
 
 
 
 
85b90d6
 
 
 
04cf10d
5df5961
be57dbe
 
 
 
7588dc2
be57dbe
 
 
 
 
 
 
 
 
 
 
 
 
 
5df5961
 
04cf10d
85b90d6
5a73c01
7226d21
 
65cafa9
7226d21
 
 
 
 
 
 
 
 
 
 
 
 
 
5a73c01
 
 
 
 
7226d21
 
5a73c01
 
 
7226d21
 
04cf10d
e5d3b96
04cf10d
 
 
 
 
 
 
 
 
bb75b27
e83b077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from fastapi import FastAPI
from fastapi.responses import HTMLResponse
from pydantic import BaseModel
from fastapi.responses import JSONResponse, StreamingResponse
import requests
import json
import openai
import time


class Text(BaseModel):
    content: str = ""


app = FastAPI()
key = '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'
openai.api_key = key
headers = {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer ' + key
}


@app.get("/")
def home():
    html_content = open('index.html').read()
    return HTMLResponse(content=html_content, status_code=200)


@app.post("/qa_maker")
def sentiment_analysis_ep(content: Text = None):
    url = 'https://api.openai.com/v1/chat/completions'
    prompt = '根据下面的文章,生成的“问题和回答”QA对,大于5个,以一行一个json格式({“question”:"xxx","answer":"xxx"})生成:\n'
    messages = [{"role": "user", "content": prompt + content.content}]
    data = {
        "model": "gpt-3.5-turbo",
        "messages": messages
    }
    print("messages = \n", messages)
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = str(result.json()['choices'][0]['message']['content']).strip()
    print('res:', res)
    res = {'content': res}
    return JSONResponse(content=res)


@app.post("/chatpdf")
def chat_pdf_ep(content: Text = None):
    url = 'https://api.openai.com/v1/chat/completions'
    messages = [
        {
            "role": "system",
            "content": "你是一个有用的助手,可以使用文章内容准确地回答问题。使用提供的文章来生成你的答案,但避免逐字复制文章。尽可能使用自己的话。准确、有用、简洁、清晰。"
        }
    ]
    obj = json.loads(content.content)
    messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
    history = obj['history']
    for his in history:
        messages.append({"role": "user", "content": his[0]})
        messages.append({"role": "assistant", "content": his[1]})
    messages.append({"role": "user", "content": obj['question']})
    data = {
        "model": "gpt-3.5-turbo",
        "messages": messages
    }
    print("messages = \n", messages)
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = str(result.json()['choices'][0]['message']['content']).strip()
    content = {'content': res}
    print('content:', content)
    return JSONResponse(content=content)


@app.post("/sale")
def sale_ep(content: Text = None):
    url = 'https://api.openai.com/v1/chat/completions'
    messages = [
        {
            "role": "system",
            "content": "你是小鹏汽车资深的销售,可以参考文章内容来生成你的答案,但避免逐字复制文章,尽可能使用自己的话,突出小鹏汽车的优点、说服用户来店试驾或购买小鹏汽车。准确、有用、有销售技巧、口语化、有亲和力。"
        }
    ]
    obj = json.loads(content.content)
    messages.append({"role": "system", "content": "文章内容:\n" + obj['doc']})
    history = obj['history']
    for his in history:
        messages.append({"role": "user", "content": his[0]})
        messages.append({"role": "assistant", "content": his[1]})
    messages.append({"role": "user", "content": obj['question']})
    data = {
        "model": "gpt-3.5-turbo",
        "messages": messages
    }
    print("messages = \n", messages)
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = str(result.json()['choices'][0]['message']['content']).strip()
    content = {'content': res}
    print('content:', content)
    return JSONResponse(content=content)


@app.post("/chatgpt")
def chat_gpt_ep(content: Text = None):
    url = 'https://api.openai.com/v1/chat/completions'
    obj = json.loads(content.content)
    data = {
        "model": "gpt-3.5-turbo",
        "messages": obj['messages']
    }
    print("data = \n", data)
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    res = str(result.json()['choices'][0]['message']['content']).strip()
    content = {'content': res}
    print('content:', content)
    return JSONResponse(content=content)


async def chat_gpt_stream_fun(content: Text = None):
    start_time = time.time()
    obj = json.loads(content.content)
    response = openai.ChatCompletion.create(
        model='gpt-3.5-turbo',
        messages=obj['messages'],
        stream=True,  # this time, we set stream=True
    )
    # create variables to collect the stream of chunks
    collected_chunks = []
    collected_messages = []
    # iterate through the stream of events
    for chunk in response:
        chunk_time = time.time() - start_time  # calculate the time delay of the chunk
        collected_chunks.append(chunk)  # save the event response
        chunk_message = chunk['choices'][0]['delta']  # extract the message
        collected_messages.append(chunk_message)  # save the message
        print(f"Message received {chunk_time:.2f} seconds after request: {chunk_message}")  # print the delay and text
        full_reply_content = ''.join([m.get('content', '') for m in collected_messages])
        print(f"Full conversation received: {full_reply_content}")
        content = {'content': full_reply_content}
        print('content:', content)
        yield full_reply_content


@app.post("/chatgptstream")
async def get_random_numbers(content: Text = None):
    return StreamingResponse(chat_gpt_stream_fun(content))


@app.post("/embeddings")
def embeddings_ep(content: Text = None):
    url = 'https://api.openai.com/v1/embeddings'
    data = {
        "model": "text-embedding-ada-002",
        "input": content.content
    }
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    return JSONResponse(content=result.json())


@app.post("/create_image")
def create_image_ep(content: Text = None):
    url = 'https://api.openai.com/v1/images/generations'
    obj = json.loads(content.content)
    data = {
        "prompt": obj["prompt"],
        "n": obj["n"],
        "size": obj["size"]
    }
    print("data = \n", data)
    result = requests.post(url=url,
                           data=json.dumps(data),
                           headers=headers
                           )
    return JSONResponse(content=result.json())