sotirios-slv commited on
Commit
04716fa
1 Parent(s): 34aef7d

Updated the script. Added some more labels and fomratted the score

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -16,7 +16,8 @@ from transformers import (
16
 
17
  diction_text = """
18
  How is this leisure to be disposed of? In the public-house? the singing hall? the dancing-saloon?
19
- which hold out seductions somewhat more dangerous, methinks, to honest labor than those presented by a library
 
20
  """
21
 
22
  diction_script = gr.Textbox(diction_text, interactive=False, show_label=False)
@@ -30,9 +31,10 @@ model_id = "openai/whisper-large-v3"
30
 
31
  description = f"""
32
  <div>
33
- <p>Welcome to redmond Barryoke! This app aims to demonstrate the potential of using machine learning to transcribe audio.</p>
34
- <p>The app invites users to record themselves reading an brief and abridged excerpt from a speech delivered by Redmond Barry at the opening of The Free Public Library of Ballarat Est in 1869. Once recorded and submitted the app will transcribe and return a "diction" score.</p>
35
- <p>This app uses {model_id} to power it's automated transcription</p>
 
36
  </div>
37
  """
38
 
@@ -83,7 +85,9 @@ def transcribe_audio(diction_text, audio):
83
 
84
  score = calc_score(diff_text)
85
 
86
- return diff_text, f"{score}%"
 
 
87
 
88
 
89
  highlighted_results = gr.HighlightedText(
@@ -93,7 +97,7 @@ highlighted_results = gr.HighlightedText(
93
  color_map={"+": "red", "-": "green"},
94
  )
95
 
96
- score = gr.Textbox("0%")
97
 
98
 
99
  input_audio = gr.Audio(
@@ -111,9 +115,8 @@ demo = gr.Interface(
111
  fn=transcribe_audio,
112
  inputs=[diction_script, input_audio],
113
  outputs=[highlighted_results, score],
114
- title="Redmond Barryoke",
115
  description=description,
116
- theme="abidlabs/Lime",
117
  )
118
 
119
 
 
16
 
17
  diction_text = """
18
  How is this leisure to be disposed of? In the public-house? the singing hall? the dancing-saloon?
19
+ which hold out seductions somewhat more dangerous, methinks, to honest labour than those presented by a library...
20
+ We may well rejoice, then, when we see a room such as this filled with attentive and reflective readers.
21
  """
22
 
23
  diction_script = gr.Textbox(diction_text, interactive=False, show_label=False)
 
31
 
32
  description = f"""
33
  <div>
34
+ <p>Welcome to Redmond Barry-oke! </p>
35
+ <p>This app aims to demonstrate the potential of using machine learning to transcribe audio. Users are invited to record themselves reading a brief and abridged excerpt from a speech delivered by Sir Redmond Barry at the opening of The Free Public Library of Ballarat Est in 1869. Once recorded and submitted the app will transcribe and return a "diction" score.</p>
36
+ <p>This app uses {model_id} to perform automated transcription</p>
37
+ <p>A full transcript of Sir Redmond Barry's speech can be read in the <a href="https://latrobejournal.slv.vic.gov.au/latrobejournal/issue/latrobe-26/t1-g-t3.html" target="_blank">La Trobe Journal</a></p>
38
  </div>
39
  """
40
 
 
85
 
86
  score = calc_score(diff_text)
87
 
88
+ formatted_score = f"{str(round(score,3))}%"
89
+
90
+ return diff_text, formatted_score
91
 
92
 
93
  highlighted_results = gr.HighlightedText(
 
97
  color_map={"+": "red", "-": "green"},
98
  )
99
 
100
+ score = gr.Textbox("0%", label="Score")
101
 
102
 
103
  input_audio = gr.Audio(
 
115
  fn=transcribe_audio,
116
  inputs=[diction_script, input_audio],
117
  outputs=[highlighted_results, score],
118
+ title="Redmond Barry-oke",
119
  description=description,
 
120
  )
121
 
122