Spaces:
Sleeping
Sleeping
from difflib import Differ | |
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoModelForSpeechSeq2Seq, | |
AutoProcessor, | |
pipeline, | |
) | |
description = """ | |
<div> | |
<p>Roll up, roll up come test your diction against a 🤖</p> | |
</div> | |
""" | |
diction_text = "How now brown cow" | |
test_text = f""" | |
<div> | |
<p>{diction_text}</p> | |
</div> | |
""" | |
diction = gr.HTML(test_text) | |
device = "cpu" | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=8, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def diff_texts(audio_input: str): | |
test_text = diction_text | |
d = Differ() | |
return [ | |
(token[2:], token[0] if token[0] != "" else None) | |
for token in d.compare(test_text, audio_input) | |
] | |
def transcribe_audio(diction, audio): | |
print("Diction", diction) | |
result = pipe(audio) | |
print(f'TRANSCRIPTION {result["text"]}') | |
diff_text = diff_texts(result["text"]) | |
print("diff", diff_text) | |
return diff_text | |
highlighted_results = gr.HighlightedText( | |
label="Diff", | |
combine_adjacent=True, | |
show_legend=True, | |
color_map={"+": "red", "-": "green"}, | |
) | |
input_audio = gr.Audio( | |
sources=["microphone"], | |
type="filepath", | |
waveform_options=gr.WaveformOptions( | |
waveform_color="#01C6FF", | |
waveform_progress_color="#0066B4", | |
skip_length=2, | |
show_controls=False, | |
), | |
) | |
# demo = gr.Interface( | |
# fn=transcribe_audio, | |
# inputs=[diction, input_audio], | |
# outputs=highlighted_results, | |
# title="Test your diction", | |
# description=description, | |
# theme="abidlabs/Lime", | |
# ) | |
with gr.Blocks() as demo: | |
gr.HTML(description) | |
gr.HTML(test_text) | |
with gr.Row(): | |
inp = input_audio | |
out = highlighted_results | |
btn = gr.Button("Run") | |
btn.click(fn=transcribe_audio, inputs=[diction_text, inp], outputs=out) | |
if __name__ == "__main__": | |
demo.launch() | |