Spaces:
Sleeping
Sleeping
from difflib import Differ | |
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoModelForSpeechSeq2Seq, | |
AutoProcessor, | |
pipeline, | |
) | |
description = """ | |
<div> | |
<p>Roll up, roll up come test your diction against a 🤖</p> | |
</div> | |
""" | |
diction_text = """ | |
<div> | |
<p>How now brown cow</p> | |
</div> | |
""" | |
diction = gr.HTML(diction_text) | |
device = "cpu" | |
# device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
model_id = "openai/whisper-large-v3" | |
model = AutoModelForSpeechSeq2Seq.from_pretrained( | |
model_id, low_cpu_mem_usage=True, use_safetensors=True | |
) | |
model.to(device) | |
processor = AutoProcessor.from_pretrained(model_id) | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=model, | |
tokenizer=processor.tokenizer, | |
feature_extractor=processor.feature_extractor, | |
max_new_tokens=128, | |
chunk_length_s=30, | |
batch_size=8, | |
return_timestamps=True, | |
torch_dtype=torch_dtype, | |
device=device, | |
) | |
def transcribe_audio(audio): | |
result = pipe(audio) | |
print(f'TRANSCRIPTION {result["text"]}') | |
try: | |
for r in result: | |
print(r) | |
except: | |
print("ERROR") | |
return result | |
input_audio = gr.Audio( | |
sources=["microphone"], | |
type="filepath", | |
waveform_options=gr.WaveformOptions( | |
waveform_color="#01C6FF", | |
waveform_progress_color="#0066B4", | |
skip_length=2, | |
show_controls=False, | |
), | |
) | |
demo = gr.Interface( | |
fn=transcribe_audio, | |
inputs=[diction, input_audio], | |
outputs="text", | |
title="Test your diction", | |
description=description, | |
theme="abidlabs/Lime", | |
) | |
if __name__ == "__main__": | |
demo.launch() | |