File size: 1,303 Bytes
252f6f4
6186718
 
 
8197c6e
 
 
 
 
 
 
91f6a7c
8197c6e
 
 
 
 
 
 
 
 
e0a729c
8197c6e
50a8cbc
e0a729c
 
8197c6e
e0a729c
 
 
8197c6e
 
 
6186718
e0a729c
8197c6e
252f6f4
8197c6e
6186718
 
 
 
 
 
 
 
 
 
 
e0a729c
6186718
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import logging

import gradio as gr

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "openai/whisper-large-v3"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    task="automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    # feature_extractor=processor.feature_extractor,
    # max_new_tokens=128,
    chunk_length_s=30,
    batch_size=8,
    # return_timestamps=True,
    # torch_dtype=torch_dtype,
    device=device,
)


def transcribe_audio(audio):
    result = pipe(audio)
    logging.info(f'TRANSCRIPTION {result["text"]}')
    return result


input_audio = gr.Audio(
    sources=["microphone"],
    waveform_options=gr.WaveformOptions(
        waveform_color="#01C6FF",
        waveform_progress_color="#0066B4",
        skip_length=2,
        show_controls=False,
    ),
)
demo = gr.Interface(fn=transcribe_audio, inputs=input_audio, outputs="text")

if __name__ == "__main__":
    demo.launch()