readme
Browse files- README.md +6 -5
- src/services/huggingface.py +5 -5
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
title: BoAmps Report Creation
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.15.0
|
8 |
app_file: app.py
|
@@ -11,6 +11,7 @@ license: apache-2.0
|
|
11 |
short_description: Create a report in BoAmps format
|
12 |
---
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
This
|
|
|
1 |
---
|
2 |
title: BoAmps Report Creation
|
3 |
+
emoji: 🌿
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.15.0
|
8 |
app_file: app.py
|
|
|
11 |
short_description: Create a report in BoAmps format
|
12 |
---
|
13 |
|
14 |
+
This tool is part of the initiative [BoAmps](https://github.com/Boavizta/BoAmps).
|
15 |
+
The purpose of the BoAmps project is to build a large, open, database of energy consumption of IT / AI tasks depending on data nature, algorithms, hardware, etc., in order to improve energy efficiency approaches based on empiric knowledge.
|
16 |
|
17 |
+
This space was initiated by a group of students from Sud Telecom Paris, many thanks to [Hicham FILALI](https://huggingface.co/FILALIHicham) for his work.
|
src/services/huggingface.py
CHANGED
@@ -52,7 +52,7 @@ def create_flattened_data(data):
|
|
52 |
"parametersNumber", "framework", "frameworkVersion", "classPath", "layersNumber", "epochsNumber", "optimizer", "quantization"]
|
53 |
"""Create a flattened data structure for the algorithms."""
|
54 |
algorithms_data = {field: "| ".join(str(algo.get(
|
55 |
-
field)) for algo in algorithms if algo.get(field)) or
|
56 |
trainingType_str = algorithms_data["trainingType"]
|
57 |
algorithmType_str = algorithms_data["algorithmType"]
|
58 |
algorithmName_str = algorithms_data["algorithmName"]
|
@@ -75,7 +75,7 @@ def create_flattened_data(data):
|
|
75 |
"dataQuantity", "shape", "source", "sourceUri", "owner"]
|
76 |
"""Create a flattened data structure for the dataset."""
|
77 |
dataset_data = {field: "| ".join(
|
78 |
-
str(d.get(field)) for d in dataset if d.get(field)) or
|
79 |
dataUsage_str = dataset_data["dataUsage"]
|
80 |
dataType_str = dataset_data["dataType"]
|
81 |
dataFormat_str = dataset_data["dataFormat"]
|
@@ -93,7 +93,7 @@ def create_flattened_data(data):
|
|
93 |
"powerCalibrationMeasurement", "durationCalibrationMeasurement", "powerConsumption", "measurementDuration", "measurementDateTime"]
|
94 |
"""Create a flattened data structure for the measures."""
|
95 |
measures_data = {field: "| ".join(str(measure.get(
|
96 |
-
field)) for measure in measures if measure.get(field)) or
|
97 |
measurementMethod_str = measures_data["measurementMethod"]
|
98 |
manufacturer_str = measures_data["manufacturer"]
|
99 |
version_str = measures_data["version"]
|
@@ -114,7 +114,7 @@ def create_flattened_data(data):
|
|
114 |
|
115 |
# Generate concatenated strings for each field
|
116 |
component_data = {field: "| ".join(str(comp.get(
|
117 |
-
field)) for comp in components if comp.get(field)) or
|
118 |
|
119 |
componentName_str = component_data["componentName"]
|
120 |
componentType_str = component_data["componentType"]
|
@@ -219,7 +219,7 @@ def create_flattened_data(data):
|
|
219 |
"powerSourceCarbonIntensity": [data.get("environment", {}).get("powerSourceCarbonIntensity", "")],
|
220 |
|
221 |
# Quality
|
222 |
-
"quality": [data.get("quality", "
|
223 |
}
|
224 |
|
225 |
|
|
|
52 |
"parametersNumber", "framework", "frameworkVersion", "classPath", "layersNumber", "epochsNumber", "optimizer", "quantization"]
|
53 |
"""Create a flattened data structure for the algorithms."""
|
54 |
algorithms_data = {field: "| ".join(str(algo.get(
|
55 |
+
field)) for algo in algorithms if algo.get(field)) or "" for field in fields}
|
56 |
trainingType_str = algorithms_data["trainingType"]
|
57 |
algorithmType_str = algorithms_data["algorithmType"]
|
58 |
algorithmName_str = algorithms_data["algorithmName"]
|
|
|
75 |
"dataQuantity", "shape", "source", "sourceUri", "owner"]
|
76 |
"""Create a flattened data structure for the dataset."""
|
77 |
dataset_data = {field: "| ".join(
|
78 |
+
str(d.get(field)) for d in dataset if d.get(field)) or "" for field in fields}
|
79 |
dataUsage_str = dataset_data["dataUsage"]
|
80 |
dataType_str = dataset_data["dataType"]
|
81 |
dataFormat_str = dataset_data["dataFormat"]
|
|
|
93 |
"powerCalibrationMeasurement", "durationCalibrationMeasurement", "powerConsumption", "measurementDuration", "measurementDateTime"]
|
94 |
"""Create a flattened data structure for the measures."""
|
95 |
measures_data = {field: "| ".join(str(measure.get(
|
96 |
+
field)) for measure in measures if measure.get(field)) or "" for field in fields}
|
97 |
measurementMethod_str = measures_data["measurementMethod"]
|
98 |
manufacturer_str = measures_data["manufacturer"]
|
99 |
version_str = measures_data["version"]
|
|
|
114 |
|
115 |
# Generate concatenated strings for each field
|
116 |
component_data = {field: "| ".join(str(comp.get(
|
117 |
+
field)) for comp in components if comp.get(field)) or "" for field in fields}
|
118 |
|
119 |
componentName_str = component_data["componentName"]
|
120 |
componentType_str = component_data["componentType"]
|
|
|
219 |
"powerSourceCarbonIntensity": [data.get("environment", {}).get("powerSourceCarbonIntensity", "")],
|
220 |
|
221 |
# Quality
|
222 |
+
"quality": [data.get("quality", "")],
|
223 |
}
|
224 |
|
225 |
|