soury commited on
Commit
3c24662
·
1 Parent(s): 66ac827
Files changed (2) hide show
  1. README.md +6 -5
  2. src/services/huggingface.py +5 -5
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: BoAmps Report Creation
3
- emoji: 🐢
4
- colorFrom: purple
5
- colorTo: purple
6
  sdk: gradio
7
  sdk_version: 5.15.0
8
  app_file: app.py
@@ -11,6 +11,7 @@ license: apache-2.0
11
  short_description: Create a report in BoAmps format
12
  ---
13
 
14
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
15
 
16
- This project was initiated by a group of students from Sud Telecom Paris.
 
1
  ---
2
  title: BoAmps Report Creation
3
+ emoji: 🌿
4
+ colorFrom: red
5
+ colorTo: green
6
  sdk: gradio
7
  sdk_version: 5.15.0
8
  app_file: app.py
 
11
  short_description: Create a report in BoAmps format
12
  ---
13
 
14
+ This tool is part of the initiative [BoAmps](https://github.com/Boavizta/BoAmps).
15
+ The purpose of the BoAmps project is to build a large, open, database of energy consumption of IT / AI tasks depending on data nature, algorithms, hardware, etc., in order to improve energy efficiency approaches based on empiric knowledge.
16
 
17
+ This space was initiated by a group of students from Sud Telecom Paris, many thanks to [Hicham FILALI](https://huggingface.co/FILALIHicham) for his work.
src/services/huggingface.py CHANGED
@@ -52,7 +52,7 @@ def create_flattened_data(data):
52
  "parametersNumber", "framework", "frameworkVersion", "classPath", "layersNumber", "epochsNumber", "optimizer", "quantization"]
53
  """Create a flattened data structure for the algorithms."""
54
  algorithms_data = {field: "| ".join(str(algo.get(
55
- field)) for algo in algorithms if algo.get(field)) or None for field in fields}
56
  trainingType_str = algorithms_data["trainingType"]
57
  algorithmType_str = algorithms_data["algorithmType"]
58
  algorithmName_str = algorithms_data["algorithmName"]
@@ -75,7 +75,7 @@ def create_flattened_data(data):
75
  "dataQuantity", "shape", "source", "sourceUri", "owner"]
76
  """Create a flattened data structure for the dataset."""
77
  dataset_data = {field: "| ".join(
78
- str(d.get(field)) for d in dataset if d.get(field)) or None for field in fields}
79
  dataUsage_str = dataset_data["dataUsage"]
80
  dataType_str = dataset_data["dataType"]
81
  dataFormat_str = dataset_data["dataFormat"]
@@ -93,7 +93,7 @@ def create_flattened_data(data):
93
  "powerCalibrationMeasurement", "durationCalibrationMeasurement", "powerConsumption", "measurementDuration", "measurementDateTime"]
94
  """Create a flattened data structure for the measures."""
95
  measures_data = {field: "| ".join(str(measure.get(
96
- field)) for measure in measures if measure.get(field)) or None for field in fields}
97
  measurementMethod_str = measures_data["measurementMethod"]
98
  manufacturer_str = measures_data["manufacturer"]
99
  version_str = measures_data["version"]
@@ -114,7 +114,7 @@ def create_flattened_data(data):
114
 
115
  # Generate concatenated strings for each field
116
  component_data = {field: "| ".join(str(comp.get(
117
- field)) for comp in components if comp.get(field)) or None for field in fields}
118
 
119
  componentName_str = component_data["componentName"]
120
  componentType_str = component_data["componentType"]
@@ -219,7 +219,7 @@ def create_flattened_data(data):
219
  "powerSourceCarbonIntensity": [data.get("environment", {}).get("powerSourceCarbonIntensity", "")],
220
 
221
  # Quality
222
- "quality": [data.get("quality", "null")],
223
  }
224
 
225
 
 
52
  "parametersNumber", "framework", "frameworkVersion", "classPath", "layersNumber", "epochsNumber", "optimizer", "quantization"]
53
  """Create a flattened data structure for the algorithms."""
54
  algorithms_data = {field: "| ".join(str(algo.get(
55
+ field)) for algo in algorithms if algo.get(field)) or "" for field in fields}
56
  trainingType_str = algorithms_data["trainingType"]
57
  algorithmType_str = algorithms_data["algorithmType"]
58
  algorithmName_str = algorithms_data["algorithmName"]
 
75
  "dataQuantity", "shape", "source", "sourceUri", "owner"]
76
  """Create a flattened data structure for the dataset."""
77
  dataset_data = {field: "| ".join(
78
+ str(d.get(field)) for d in dataset if d.get(field)) or "" for field in fields}
79
  dataUsage_str = dataset_data["dataUsage"]
80
  dataType_str = dataset_data["dataType"]
81
  dataFormat_str = dataset_data["dataFormat"]
 
93
  "powerCalibrationMeasurement", "durationCalibrationMeasurement", "powerConsumption", "measurementDuration", "measurementDateTime"]
94
  """Create a flattened data structure for the measures."""
95
  measures_data = {field: "| ".join(str(measure.get(
96
+ field)) for measure in measures if measure.get(field)) or "" for field in fields}
97
  measurementMethod_str = measures_data["measurementMethod"]
98
  manufacturer_str = measures_data["manufacturer"]
99
  version_str = measures_data["version"]
 
114
 
115
  # Generate concatenated strings for each field
116
  component_data = {field: "| ".join(str(comp.get(
117
+ field)) for comp in components if comp.get(field)) or "" for field in fields}
118
 
119
  componentName_str = component_data["componentName"]
120
  componentType_str = component_data["componentType"]
 
219
  "powerSourceCarbonIntensity": [data.get("environment", {}).get("powerSourceCarbonIntensity", "")],
220
 
221
  # Quality
222
+ "quality": [data.get("quality", "")],
223
  }
224
 
225