File size: 11,279 Bytes
c9117ba
66ac827
 
 
f1c0686
7bd4b6e
f1c0686
 
 
7bd4b6e
 
f1c0686
 
7bd4b6e
f1c0686
 
 
 
 
 
 
 
 
7bd4b6e
f1c0686
 
66ac827
f1c0686
 
 
 
 
7bd4b6e
f1c0686
66ac827
 
 
 
f1c0686
 
 
 
 
 
 
7bd4b6e
66ac827
 
 
 
 
 
 
 
3c24662
66ac827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c24662
66ac827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c24662
66ac827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c24662
66ac827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c24662
66ac827
 
 
 
f1c0686
3efb4a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66ac827
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from huggingface_hub import login
from datasets import load_dataset, Dataset, concatenate_datasets
import json
from src.services.util import HF_TOKEN, DATASET_NAME


def init_huggingface():
    """Initialize Hugging Face authentication."""
    if HF_TOKEN is None:
        raise ValueError(
            "Hugging Face token not found in environment variables.")
    login(token=HF_TOKEN)


def update_dataset(json_data):
    """Update the Hugging Face dataset with new data."""
    if json_data is None or json_data.startswith("The following fields are required"):
        return json_data or "No data to submit. Please fill in all required fields."

    try:
        data = json.loads(json_data)
    except json.JSONDecodeError:
        return "Invalid JSON data. Please ensure all required fields are filled correctly."

    try:
        dataset = load_dataset(DATASET_NAME, split="train")
        print(dataset)
    except:
        dataset = Dataset.from_dict({})

    new_data = create_flattened_data(data)
    new_dataset = Dataset.from_dict(new_data)

    if len(dataset) > 0:
        print("dataset intitial")
        print(dataset)
        print("data to add ")
        print(new_dataset)
        updated_dataset = concatenate_datasets([dataset, new_dataset])
    else:
        updated_dataset = new_dataset

    updated_dataset.push_to_hub(DATASET_NAME)
    return "Data submitted successfully and dataset updated!"


def create_flattened_data(data):
    """Create a flattened data structure for the algorithms."""
    # Handle algorithms
    algorithms = data.get("task", {}).get("algorithms", [])
    fields = ["trainingType", "algorithmType", "algorithmName", "algorithmUri", "foundationModelName", "foundationModelUri",
              "parametersNumber", "framework",  "frameworkVersion", "classPath", "layersNumber", "epochsNumber", "optimizer", "quantization"]
    """Create a flattened data structure for the algorithms."""
    algorithms_data = {field: "| ".join(str(algo.get(
        field)) for algo in algorithms if algo.get(field)) or "" for field in fields}
    trainingType_str = algorithms_data["trainingType"]
    algorithmType_str = algorithms_data["algorithmType"]
    algorithmName_str = algorithms_data["algorithmName"]
    algorithmUri_str = algorithms_data["algorithmUri"]
    foundationModelName_str = algorithms_data["foundationModelName"]
    foundationModelUri_str = algorithms_data["foundationModelUri"]
    parametersNumber_str = algorithms_data["parametersNumber"]
    framework_str = algorithms_data["framework"]
    frameworkVersion_str = algorithms_data["frameworkVersion"]
    classPath_str = algorithms_data["classPath"]
    layersNumber_str = algorithms_data["layersNumber"]
    epochsNumber_str = algorithms_data["epochsNumber"]
    optimizer_str = algorithms_data["optimizer"]
    quantization_str = algorithms_data["quantization"]

    """Create a flattened data structure for the dataset."""
    # Handle dataset
    dataset = data.get("task", {}).get("dataset", [])
    fields = ["dataUsage", "dataType", "dataFormat", "dataSize",
              "dataQuantity", "shape", "source", "sourceUri",  "owner"]
    """Create a flattened data structure for the dataset."""
    dataset_data = {field: "| ".join(
        str(d.get(field)) for d in dataset if d.get(field)) or "" for field in fields}
    dataUsage_str = dataset_data["dataUsage"]
    dataType_str = dataset_data["dataType"]
    dataFormat_str = dataset_data["dataFormat"]
    dataSize_str = dataset_data["dataSize"]
    dataQuantity_str = dataset_data["dataQuantity"]
    shape_str = dataset_data["shape"]
    source_str = dataset_data["source"]
    sourceUri_str = dataset_data["sourceUri"]
    owner_str = dataset_data["owner"]

    """Create a flattened data structure for the measures."""
    # Handle measures
    measures = data.get("measures", [])
    fields = ["measurementMethod", "manufacturer", "version", "cpuTrackingMode", "gpuTrackingMode", "averageUtilizationCpu", "averageUtilizationGpu",
              "powerCalibrationMeasurement",  "durationCalibrationMeasurement", "powerConsumption", "measurementDuration", "measurementDateTime"]
    """Create a flattened data structure for the measures."""
    measures_data = {field: "| ".join(str(measure.get(
        field)) for measure in measures if measure.get(field)) or "" for field in fields}
    measurementMethod_str = measures_data["measurementMethod"]
    manufacturer_str = measures_data["manufacturer"]
    version_str = measures_data["version"]
    cpuTrackingMode_str = measures_data["cpuTrackingMode"]
    gpuTrackingMode_str = measures_data["gpuTrackingMode"]
    averageUtilizationCpu_str = measures_data["averageUtilizationCpu"]
    averageUtilizationGpu_str = measures_data["averageUtilizationGpu"]
    powerCalibrationMeasurement_str = measures_data["powerCalibrationMeasurement"]
    durationCalibrationMeasurement_str = measures_data["durationCalibrationMeasurement"]
    powerConsumption_str = measures_data["powerConsumption"]
    measurementDuration_str = measures_data["measurementDuration"]
    measurementDateTime_str = measures_data["measurementDateTime"]

    # Handle components
    components = data.get("infrastructure", {}).get("components", [])
    fields = ["componentName", "componentType", "nbComponent", "memorySize",
              "manufacturer", "family", "series", "share"]

    # Generate concatenated strings for each field
    component_data = {field: "| ".join(str(comp.get(
        field)) for comp in components if comp.get(field)) or "" for field in fields}

    componentName_str = component_data["componentName"]
    componentType_str = component_data["componentType"]
    nbComponent_str = component_data["nbComponent"]
    memorySize_str = component_data["memorySize"]
    manufacturer_infra_str = component_data["manufacturer"]
    family_str = component_data["family"]
    series_str = component_data["series"]
    share_str = component_data["share"]

    return {
        # Header
        "licensing": [data.get("header", {}).get("licensing", "")],
        "formatVersion": [data.get("header", {}).get("formatVersion", "")],
        "formatVersionSpecificationUri": [data.get("header", {}).get("formatVersionSpecificationUri", "")],
        "reportId": [data.get("header", {}).get("reportId", "")],
        "reportDatetime": [data.get("header", {}).get("reportDatetime", "")],
        "reportStatus": [data.get("header", {}).get("reportStatus", "")],
        "publisher_name": [data.get("header", {}).get("publisher", {}).get("name", "")],
        "publisher_division": [data.get("header", {}).get("publisher", {}).get("division", "")],
        "publisher_projectName": [data.get("header", {}).get("publisher", {}).get("projectName", "")],
        "publisher_confidentialityLevel": [data.get("header", {}).get("publisher", {}).get("confidentialityLevel", "")],
        "publisher_publicKey": [data.get("header", {}).get("publisher", {}).get("publicKey", "")],

        # Task
        "taskStage": [data.get("task", {}).get("taskStage", "")],
        "taskFamily": [data.get("task", {}).get("taskFamily", "")],
        "nbRequest": [data.get("task", {}).get("nbRequest", "")],
        # Algorithms
        "trainingType": [trainingType_str],
        "algorithmType": [algorithmType_str],
        "algorithmName": [algorithmName_str],
        "algorithmUri": [algorithmUri_str],
        "foundationModelName": [foundationModelName_str],
        "foundationModelUri": [foundationModelUri_str],
        "parametersNumber": [parametersNumber_str],
        "framework": [framework_str],
        "frameworkVersion": [frameworkVersion_str],
        "classPath": [classPath_str],
        "layersNumber": [layersNumber_str],
        "epochsNumber": [epochsNumber_str],
        "optimizer": [optimizer_str],
        "quantization": [quantization_str],
        # Dataset
        "dataUsage": [dataUsage_str],
        "dataType": [dataType_str],
        "dataFormat": [dataFormat_str],
        "dataSize": [dataSize_str],
        "dataQuantity": [dataQuantity_str],
        "shape": [shape_str],
        "source": [source_str],
        "sourceUri": [sourceUri_str],
        "owner": [owner_str],
        "measuredAccuracy": [data.get("task", {}).get("measuredAccuracy", "")],
        "estimatedAccuracy": [data.get("task", {}).get("estimatedAccuracy", "")],
        "taskDescription": [data.get("task", {}).get("taskDescription", "")],

        # Measures
        "measurementMethod": [measurementMethod_str],
        "manufacturer": [manufacturer_str],
        "version": [version_str],
        "cpuTrackingMode": [cpuTrackingMode_str],
        "gpuTrackingMode": [gpuTrackingMode_str],
        "averageUtilizationCpu": [averageUtilizationCpu_str],
        "averageUtilizationGpu": [averageUtilizationGpu_str],
        "powerCalibrationMeasurement": [powerCalibrationMeasurement_str],
        "durationCalibrationMeasurement": [durationCalibrationMeasurement_str],
        "powerConsumption": [powerConsumption_str],
        "measurementDuration": [measurementDuration_str],
        "measurementDateTime": [measurementDateTime_str],

        # System
        "os": [data.get("system", {}).get("os", "")],
        "distribution": [data.get("system", {}).get("distribution", "")],
        "distributionVersion": [data.get("system", {}).get("distributionVersion", "")],

        # Software
        "language": [data.get("software", {}).get("language", "")],
        "version_software": [data.get("software", {}).get("version_software", "")],

        # Infrastructure
        "infraType": [data.get("infrastructure", {}).get("infra_type", "")],
        "cloudProvider": [data.get("infrastructure", {}).get("cloudProvider", "")],
        "cloudInstance": [data.get("infrastructure", {}).get("cloudInstance", "")],
        "cloudService": [data.get("infrastructure", {}).get("cloudService", "")],
        "componentName": [componentName_str],
        "componentType": [componentType_str],
        "nbComponent": [nbComponent_str],
        "memorySize": [memorySize_str],
        "manufacturer_infra": [manufacturer_infra_str],
        "family": [family_str],
        "series": [series_str],
        "share": [share_str],

        # Environment
        "country": [data.get("environment", {}).get("country", "")],
        "latitude": [data.get("environment", {}).get("latitude", "")],
        "longitude": [data.get("environment", {}).get("longitude", "")],
        "location": [data.get("environment", {}).get("location", "")],
        "powerSupplierType": [data.get("environment", {}).get("powerSupplierType", "")],
        "powerSource": [data.get("environment", {}).get("powerSource", "")],
        "powerSourceCarbonIntensity": [data.get("environment", {}).get("powerSourceCarbonIntensity", "")],

        # Quality
        "quality": [data.get("quality", "")],
    }


""" 
def create_flattened_data(data):
    out = {}

    def flatten(x, name=''):
        if type(x) is dict:
            for a in x:
                flatten(x[a], name + a + '_')
        elif type(x) is list:
            i = 0
            for a in x:
                flatten(a, name + str(i) + '_')
                i += 1
        else:
            out[name[:-1]] = x

    flatten(data)
    return out
"""