Spaces:
Running
Running
import json | |
import os | |
import shutil | |
import sys | |
import numpy as np | |
from xtcocotools.coco import COCO | |
def search_match(bbox, num_keypoints, segmentation): | |
found = [] | |
checked = 0 | |
for json_file, coco in COCO_DICT.items(): | |
cat_ids = coco.getCatIds() | |
for cat_id in cat_ids: | |
img_ids = coco.getImgIds(catIds=cat_id) | |
for img_id in img_ids: | |
annotations = coco.loadAnns(coco.getAnnIds(imgIds=img_id, catIds=cat_id)) | |
for ann in annotations: | |
checked += 1 | |
if (ann['num_keypoints'] == num_keypoints and ann['bbox'] == bbox and ann[ | |
'segmentation'] == segmentation): | |
src_file = coco.loadImgs(img_id)[0]["file_name"] | |
split = "test" if "test" in json_file else "train" | |
found.append((src_file, ann, split)) | |
# return src_file, ann, split | |
if len(found) == 0: | |
raise Exception("No match found out of {} images".format(checked)) | |
elif len(found) > 1: | |
raise Exception("More than one match! ".format(found)) | |
return found[0] | |
if __name__ == "__main__": | |
carfusion_dir_path = sys.argv[1] | |
mp100_dataset_path = sys.argv[2] | |
os.makedirs('output', exist_ok=True) | |
for cat in ['car', 'bus', 'suv']: | |
os.makedirs(os.path.join('output', cat), exist_ok=True) | |
COCO_DICT = {} | |
ann_files = os.path.join(carfusion_dir_path, 'annotations') | |
for json_file in os.listdir(ann_files): | |
COCO_DICT[json_file] = COCO(os.path.join(carfusion_dir_path, 'annotations', json_file)) | |
count = 0 | |
print_log = [] | |
for json_file in os.listdir(mp100_dataset_path): | |
print("Processing {}".format(json_file)) | |
cats = {} | |
coco = COCO(os.path.join(mp100_dataset_path, json_file)) | |
cat_ids = coco.getCatIds() | |
for cat_id in cat_ids: | |
category_info = coco.loadCats(cat_id) | |
cat_name = category_info[0]['name'] | |
if cat_name in ['car', 'bus', 'suv']: | |
cats[cat_name] = cat_id | |
for cat_name, cat_id in cats.items(): | |
img_ids = coco.getImgIds(catIds=cat_id) | |
count += len(img_ids) | |
print_log.append(f'{json_file} : {cat_name}: {len(img_ids)}') | |
for img_id in img_ids: | |
img = coco.loadImgs(img_id)[0] | |
dst_file_name = img['file_name'] | |
annotation = coco.loadAnns(coco.getAnnIds(imgIds=img_id, catIds=cat_id, iscrowd=None)) | |
bbox = annotation[0]['bbox'] | |
keypoints = annotation[0]['keypoints'] | |
segmentation = annotation[0]['segmentation'] | |
num_keypoints = annotation[0]['num_keypoints'] | |
# Search for a match: | |
src_img, src_ann, split = search_match(bbox, num_keypoints, segmentation) | |
shutil.copyfile( | |
os.path.join(carfusion_dir_path, split, src_img), | |
os.path.join('output', dst_file_name)) |