Spaces:
Running
Running
import os | |
import random | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import uuid | |
colors = [ | |
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], | |
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], | |
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], | |
[255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]] | |
def plot_results(support_img, query_img, support_kp, support_w, query_kp, query_w, skeleton, | |
initial_proposals, prediction, radius=6, out_dir='./heatmaps'): | |
img_names = [img.split("_")[0] for img in os.listdir(out_dir) if str_is_int(img.split("_")[0])] | |
if len(img_names) > 0: | |
name_idx = max([int(img_name) for img_name in img_names]) + 1 | |
else: | |
name_idx = 0 | |
h, w, c = support_img.shape | |
prediction = prediction[-1].cpu().numpy() * h | |
support_img = (support_img - np.min(support_img)) / (np.max(support_img) - np.min(support_img)) | |
query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img)) | |
for id, (img, w, keypoint) in enumerate(zip([support_img, query_img], | |
[support_w, query_w], | |
[support_kp, prediction])): | |
f, axes = plt.subplots() | |
plt.imshow(img) | |
for k in range(keypoint.shape[0]): | |
if w[k] > 0: | |
kp = keypoint[k, :2] | |
c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6) | |
patch = plt.Circle(kp, radius, color=c) | |
axes.add_patch(patch) | |
axes.text(kp[0], kp[1], k) | |
plt.draw() | |
for l, limb in enumerate(skeleton): | |
kp = keypoint[:, :2] | |
if l > len(colors) - 1: | |
c = [x / 255 for x in random.sample(range(0, 255), 3)] | |
else: | |
c = [x / 255 for x in colors[l]] | |
if w[limb[0]] > 0 and w[limb[1]] > 0: | |
patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]], | |
[kp[limb[0], 1], kp[limb[1], 1]], | |
linewidth=6, color=c, alpha=0.6) | |
axes.add_artist(patch) | |
plt.axis('off') # command for hiding the axis. | |
name = 'support' if id == 0 else 'query' | |
plt.savefig(f'./{out_dir}/{str(name_idx)}_{str(name)}.png', bbox_inches='tight', pad_inches=0) | |
if id == 1: | |
plt.show() | |
plt.clf() | |
plt.close('all') | |
def str_is_int(s): | |
try: | |
int(s) | |
return True | |
except ValueError: | |
return False | |