Spaces:
Running
Running
File size: 16,208 Bytes
241adf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import cv2
import numpy as np
from mmpose.core.post_processing import (get_warp_matrix,
warp_affine_joints)
from mmpose.datasets.builder import PIPELINES
from .post_transforms import (affine_transform,
get_affine_transform)
@PIPELINES.register_module()
class TopDownAffineFewShot:
"""Affine transform the image to make input.
Required keys:'img', 'joints_3d', 'joints_3d_visible', 'ann_info','scale',
'rotation' and 'center'. Modified keys:'img', 'joints_3d', and
'joints_3d_visible'.
Args:
use_udp (bool): To use unbiased data processing.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self, use_udp=False):
self.use_udp = use_udp
def __call__(self, results):
image_size = results['ann_info']['image_size']
img = results['img']
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
c = results['center']
s = results['scale']
r = results['rotation']
if self.use_udp:
trans = get_warp_matrix(r, c * 2.0, image_size - 1.0, s * 200.0)
img = cv2.warpAffine(
img,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR)
joints_3d[:, 0:2] = \
warp_affine_joints(joints_3d[:, 0:2].copy(), trans)
else:
trans = get_affine_transform(c, s, r, image_size)
img = cv2.warpAffine(
img,
trans, (int(image_size[0]), int(image_size[1])),
flags=cv2.INTER_LINEAR)
for i in range(len(joints_3d)):
if joints_3d_visible[i, 0] > 0.0:
joints_3d[i,
0:2] = affine_transform(joints_3d[i, 0:2], trans)
results['img'] = img
results['joints_3d'] = joints_3d
results['joints_3d_visible'] = joints_3d_visible
return results
@PIPELINES.register_module()
class TopDownGenerateTargetFewShot:
"""Generate the target heatmap.
Required keys: 'joints_3d', 'joints_3d_visible', 'ann_info'.
Modified keys: 'target', and 'target_weight'.
Args:
sigma: Sigma of heatmap gaussian for 'MSRA' approach.
kernel: Kernel of heatmap gaussian for 'Megvii' approach.
encoding (str): Approach to generate target heatmaps.
Currently supported approaches: 'MSRA', 'Megvii', 'UDP'.
Default:'MSRA'
unbiased_encoding (bool): Option to use unbiased
encoding methods.
Paper ref: Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
keypoint_pose_distance: Keypoint pose distance for UDP.
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
target_type (str): supported targets: 'GaussianHeatMap',
'CombinedTarget'. Default:'GaussianHeatMap'
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
"""
def __init__(self,
sigma=2,
kernel=(11, 11),
valid_radius_factor=0.0546875,
target_type='GaussianHeatMap',
encoding='MSRA',
unbiased_encoding=False):
self.sigma = sigma
self.unbiased_encoding = unbiased_encoding
self.kernel = kernel
self.valid_radius_factor = valid_radius_factor
self.target_type = target_type
self.encoding = encoding
def _msra_generate_target(self, cfg, joints_3d, joints_3d_visible, sigma):
"""Generate the target heatmap via "MSRA" approach.
Args:
cfg (dict): data config
joints_3d: np.ndarray ([num_joints, 3])
joints_3d_visible: np.ndarray ([num_joints, 3])
sigma: Sigma of heatmap gaussian
Returns:
tuple: A tuple containing targets.
- target: Target heatmaps.
- target_weight: (1: visible, 0: invisible)
"""
num_joints = len(joints_3d)
image_size = cfg['image_size']
W, H = cfg['heatmap_size']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
assert not use_different_joint_weights
target_weight = np.zeros((num_joints, 1), dtype=np.float32)
target = np.zeros((num_joints, H, W), dtype=np.float32)
# 3-sigma rule
tmp_size = sigma * 3
if self.unbiased_encoding:
for joint_id in range(num_joints):
target_weight[joint_id] = joints_3d_visible[joint_id, 0]
feat_stride = image_size / [W, H]
mu_x = joints_3d[joint_id][0] / feat_stride[0]
mu_y = joints_3d[joint_id][1] / feat_stride[1]
# Check that any part of the gaussian is in-bounds
ul = [mu_x - tmp_size, mu_y - tmp_size]
br = [mu_x + tmp_size + 1, mu_y + tmp_size + 1]
if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0:
target_weight[joint_id] = 0
if target_weight[joint_id] == 0:
continue
x = np.arange(0, W, 1, np.float32)
y = np.arange(0, H, 1, np.float32)
y = y[:, None]
if target_weight[joint_id] > 0.5:
target[joint_id] = np.exp(-((x - mu_x) ** 2 +
(y - mu_y) ** 2) /
(2 * sigma ** 2))
else:
for joint_id in range(num_joints):
target_weight[joint_id] = joints_3d_visible[joint_id, 0]
feat_stride = image_size / [W, H]
mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= W or ul[1] >= H or br[0] < 0 or br[1] < 0:
target_weight[joint_id] = 0
if target_weight[joint_id] > 0.5:
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
x0 = y0 = size // 2
# The gaussian is not normalized,
# we want the center value to equal 1
g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], W) - ul[0]
g_y = max(0, -ul[1]), min(br[1], H) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], W)
img_y = max(0, ul[1]), min(br[1], H)
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
if use_different_joint_weights:
target_weight = np.multiply(target_weight, joint_weights)
return target, target_weight
def _udp_generate_target(self, cfg, joints_3d, joints_3d_visible, factor,
target_type):
"""Generate the target heatmap via 'UDP' approach. Paper ref: Huang et
al. The Devil is in the Details: Delving into Unbiased Data Processing
for Human Pose Estimation (CVPR 2020).
Note:
num keypoints: K
heatmap height: H
heatmap width: W
num target channels: C
C = K if target_type=='GaussianHeatMap'
C = 3*K if target_type=='CombinedTarget'
Args:
cfg (dict): data config
joints_3d (np.ndarray[K, 3]): Annotated keypoints.
joints_3d_visible (np.ndarray[K, 3]): Visibility of keypoints.
factor (float): kernel factor for GaussianHeatMap target or
valid radius factor for CombinedTarget.
target_type (str): 'GaussianHeatMap' or 'CombinedTarget'.
GaussianHeatMap: Heatmap target with gaussian distribution.
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Returns:
tuple: A tuple containing targets.
- target (np.ndarray[C, H, W]): Target heatmaps.
- target_weight (np.ndarray[K, 1]): (1: visible, 0: invisible)
"""
num_joints = len(joints_3d)
image_size = cfg['image_size']
heatmap_size = cfg['heatmap_size']
joint_weights = cfg['joint_weights']
use_different_joint_weights = cfg['use_different_joint_weights']
assert not use_different_joint_weights
target_weight = np.ones((num_joints, 1), dtype=np.float32)
target_weight[:, 0] = joints_3d_visible[:, 0]
assert target_type in ['GaussianHeatMap', 'CombinedTarget']
if target_type == 'GaussianHeatMap':
target = np.zeros((num_joints, heatmap_size[1], heatmap_size[0]),
dtype=np.float32)
tmp_size = factor * 3
# prepare for gaussian
size = 2 * tmp_size + 1
x = np.arange(0, size, 1, np.float32)
y = x[:, None]
for joint_id in range(num_joints):
feat_stride = (image_size - 1.0) / (heatmap_size - 1.0)
mu_x = int(joints_3d[joint_id][0] / feat_stride[0] + 0.5)
mu_y = int(joints_3d[joint_id][1] / feat_stride[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
mu_x_ac = joints_3d[joint_id][0] / feat_stride[0]
mu_y_ac = joints_3d[joint_id][1] / feat_stride[1]
x0 = y0 = size // 2
x0 += mu_x_ac - mu_x
y0 += mu_y_ac - mu_y
g = np.exp(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * factor ** 2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
elif target_type == 'CombinedTarget':
target = np.zeros(
(num_joints, 3, heatmap_size[1] * heatmap_size[0]),
dtype=np.float32)
feat_width = heatmap_size[0]
feat_height = heatmap_size[1]
feat_x_int = np.arange(0, feat_width)
feat_y_int = np.arange(0, feat_height)
feat_x_int, feat_y_int = np.meshgrid(feat_x_int, feat_y_int)
feat_x_int = feat_x_int.flatten()
feat_y_int = feat_y_int.flatten()
# Calculate the radius of the positive area in classification
# heatmap.
valid_radius = factor * heatmap_size[1]
feat_stride = (image_size - 1.0) / (heatmap_size - 1.0)
for joint_id in range(num_joints):
mu_x = joints_3d[joint_id][0] / feat_stride[0]
mu_y = joints_3d[joint_id][1] / feat_stride[1]
x_offset = (mu_x - feat_x_int) / valid_radius
y_offset = (mu_y - feat_y_int) / valid_radius
dis = x_offset ** 2 + y_offset ** 2
keep_pos = np.where(dis <= 1)[0]
v = target_weight[joint_id]
if v > 0.5:
target[joint_id, 0, keep_pos] = 1
target[joint_id, 1, keep_pos] = x_offset[keep_pos]
target[joint_id, 2, keep_pos] = y_offset[keep_pos]
target = target.reshape(num_joints * 3, heatmap_size[1],
heatmap_size[0])
if use_different_joint_weights:
target_weight = np.multiply(target_weight, joint_weights)
return target, target_weight
def __call__(self, results):
"""Generate the target heatmap."""
joints_3d = results['joints_3d']
joints_3d_visible = results['joints_3d_visible']
assert self.encoding in ['MSRA', 'UDP']
if self.encoding == 'MSRA':
if isinstance(self.sigma, list):
num_sigmas = len(self.sigma)
cfg = results['ann_info']
num_joints = len(joints_3d)
heatmap_size = cfg['heatmap_size']
target = np.empty(
(0, num_joints, heatmap_size[1], heatmap_size[0]),
dtype=np.float32)
target_weight = np.empty((0, num_joints, 1), dtype=np.float32)
for i in range(num_sigmas):
target_i, target_weight_i = self._msra_generate_target(
cfg, joints_3d, joints_3d_visible, self.sigma[i])
target = np.concatenate([target, target_i[None]], axis=0)
target_weight = np.concatenate(
[target_weight, target_weight_i[None]], axis=0)
else:
target, target_weight = self._msra_generate_target(
results['ann_info'], joints_3d, joints_3d_visible,
self.sigma)
elif self.encoding == 'UDP':
if self.target_type == 'CombinedTarget':
factors = self.valid_radius_factor
channel_factor = 3
elif self.target_type == 'GaussianHeatMap':
factors = self.sigma
channel_factor = 1
if isinstance(factors, list):
num_factors = len(factors)
cfg = results['ann_info']
num_joints = len(joints_3d)
W, H = cfg['heatmap_size']
target = np.empty((0, channel_factor * num_joints, H, W),
dtype=np.float32)
target_weight = np.empty((0, num_joints, 1), dtype=np.float32)
for i in range(num_factors):
target_i, target_weight_i = self._udp_generate_target(
cfg, joints_3d, joints_3d_visible, factors[i],
self.target_type)
target = np.concatenate([target, target_i[None]], axis=0)
target_weight = np.concatenate(
[target_weight, target_weight_i[None]], axis=0)
else:
target, target_weight = self._udp_generate_target(
results['ann_info'], joints_3d, joints_3d_visible, factors,
self.target_type)
else:
raise ValueError(
f'Encoding approach {self.encoding} is not supported!')
results['target'] = target
results['target_weight'] = target_weight
return results
|