Spaces:
Running
Running
File size: 17,064 Bytes
241adf2 e3ff5a8 43a0c69 241adf2 248b92d 241adf2 d65b980 248b92d 7aa7d05 241adf2 248b92d d65b980 241adf2 248b92d 241adf2 93cebd0 241adf2 93cebd0 241adf2 248b92d 241adf2 248b92d 241adf2 248b92d 241adf2 6ca8d3a 241adf2 248b92d 241adf2 248b92d 6a7e98c 241adf2 248b92d 241adf2 248b92d 241adf2 248b92d 241adf2 248b92d 241adf2 248b92d 6ca8d3a 241adf2 248b92d 6ca8d3a 248b92d 241adf2 248b92d 241adf2 248b92d 241adf2 ffccf07 241adf2 7a68ad4 241adf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import argparse
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random
os.system('python setup.py develop')
import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw, Image
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from demo import Resize_Pad
from models import *
import matplotlib
matplotlib.use('agg')
def plot_results(support_img, query_img, support_kp, support_w, query_kp,
query_w, skeleton,
initial_proposals, prediction, radius=6):
h, w, c = support_img.shape
prediction = prediction[-1].cpu().numpy() * h
query_img = (query_img - np.min(query_img)) / (
np.max(query_img) - np.min(query_img))
for id, (img, w, keypoint) in enumerate(zip([query_img],
[query_w],
[prediction])):
f, axes = plt.subplots()
plt.imshow(img)
for k in range(keypoint.shape[0]):
if w[k] > 0:
kp = keypoint[k, :2]
c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
patch = plt.Circle(kp, radius, color=c)
axes.add_patch(patch)
axes.text(kp[0], kp[1], k)
plt.draw()
for l, limb in enumerate(skeleton):
kp = keypoint[:, :2]
if l > len(COLORS) - 1:
c = [x / 255 for x in random.sample(range(0, 255), 3)]
else:
c = [x / 255 for x in COLORS[l]]
if w[limb[0]] > 0 and w[limb[1]] > 0:
patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]],
[kp[limb[0], 1], kp[limb[1], 1]],
linewidth=6, color=c, alpha=0.6)
axes.add_artist(patch)
plt.axis('off') # command for hiding the axis.
plt.subplots_adjust(0, 0, 1, 1, 0, 0)
return plt
COLORS = [
[255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
[255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]
]
def process(query_img, state,
cfg_path='configs/demo_b.py'):
cfg = Config.fromfile(cfg_path)
width, height, _ = state['original_support_image'].shape
kp_src_np = np.array(state['kp_src']).copy().astype(np.float32)
kp_src_np[:, 0] = kp_src_np[:,0] / (width // 4) * cfg.model.encoder_config.img_size
kp_src_np[:, 1] = kp_src_np[:,1] / (height // 4) * cfg.model.encoder_config.img_size
kp_src_np = np.flip(kp_src_np, 1).copy()
kp_src_tensor = torch.tensor(kp_src_np).float()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Resize_Pad(cfg.model.encoder_config.img_size,
cfg.model.encoder_config.img_size)])
if len(state['skeleton']) == 0:
state['skeleton'] = [(0, 0)]
support_img = preprocess(state['original_support_image']).flip(0)[None]
np_query = np.array(query_img)[:, :, ::-1].copy()
q_img = preprocess(np_query).flip(0)[None]
# Create heatmap from keypoints
genHeatMap = TopDownGenerateTargetFewShot()
data_cfg = cfg.data_cfg
data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size,
cfg.model.encoder_config.img_size])
data_cfg['joint_weights'] = None
data_cfg['use_different_joint_weights'] = False
kp_src_3d = torch.cat(
(kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
kp_src_3d_weight = torch.cat(
(torch.ones_like(kp_src_tensor),
torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
kp_src_3d,
kp_src_3d_weight,
sigma=1)
target_s = torch.tensor(target_s).float()[None]
target_weight_s = torch.ones_like(
torch.tensor(target_weight_s).float()[None])
data = {
'img_s': [support_img],
'img_q': q_img,
'target_s': [target_s],
'target_weight_s': [target_weight_s],
'target_q': None,
'target_weight_q': None,
'return_loss': False,
'img_metas': [{'sample_skeleton': [state['skeleton']],
'query_skeleton': state['skeleton'],
'sample_joints_3d': [kp_src_3d],
'query_joints_3d': kp_src_3d,
'sample_center': [kp_src_tensor.mean(dim=0)],
'query_center': kp_src_tensor.mean(dim=0),
'sample_scale': [
kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0]],
'query_scale': kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0],
'sample_rotation': [0],
'query_rotation': 0,
'sample_bbox_score': [1],
'query_bbox_score': 1,
'query_image_file': '',
'sample_image_file': [''],
}]
}
# Load model
model = build_posenet(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, checkpoint_path, map_location='cpu')
model.eval()
with torch.no_grad():
outputs = model(**data)
# visualize results
vis_s_weight = target_weight_s[0]
vis_q_weight = target_weight_s[0]
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
support_kp = kp_src_3d
out = plot_results(vis_s_image,
vis_q_image,
support_kp,
vis_s_weight,
None,
vis_q_weight,
state['skeleton'],
None,
torch.tensor(outputs['points']).squeeze(0),
)
return out, state
def update_examples(support_img, posed_support, query_img, state, r=0.015, width=0.02):
state['color_idx'] = 0
state['original_support_image'] = np.array(support_img)[:, :, ::-1].copy()
support_img, posed_support, _ = set_query(support_img, state, example=True)
w, h = support_img.size
draw_pose = ImageDraw.Draw(support_img)
draw_limb = ImageDraw.Draw(posed_support)
r = int(r * w)
width = int(width * w)
for pixel in state['kp_src']:
leftUpPoint = (pixel[1] - r, pixel[0] - r)
rightDownPoint = (pixel[1] + r, pixel[0] + r)
twoPointList = [leftUpPoint, rightDownPoint]
draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
for limb in state['skeleton']:
point_a = state['kp_src'][limb[0]][::-1]
point_b = state['kp_src'][limb[1]][::-1]
if state['color_idx'] < len(COLORS):
c = COLORS[state['color_idx']]
state['color_idx'] += 1
else:
c = random.choices(range(256), k=3)
draw_limb.line([point_a, point_b], fill=tuple(c), width=width)
return support_img, posed_support, query_img, state
def get_select_coords(kp_support,
limb_support,
state,
evt: gr.SelectData,
r=0.015):
pixels_in_queue = set()
pixels_in_queue.add((evt.index[1], evt.index[0]))
while len(pixels_in_queue) > 0:
pixel = pixels_in_queue.pop()
if pixel[0] is not None and pixel[1] is not None and pixel not in \
state['kp_src']:
state['kp_src'].append(pixel)
else:
continue
if limb_support is None:
canvas_limb = kp_support
else:
canvas_limb = limb_support
canvas_kp = kp_support
w, h = canvas_kp.size
draw_pose = ImageDraw.Draw(canvas_kp)
draw_limb = ImageDraw.Draw(canvas_limb)
r = int(r * w)
leftUpPoint = (pixel[1] - r, pixel[0] - r)
rightDownPoint = (pixel[1] + r, pixel[0] + r)
twoPointList = [leftUpPoint, rightDownPoint]
draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
return canvas_kp, canvas_limb, state
def get_limbs(kp_support,
state,
evt: gr.SelectData,
r=0.02, width=0.02):
curr_pixel = (evt.index[1], evt.index[0])
pixels_in_queue = set()
pixels_in_queue.add((evt.index[1], evt.index[0]))
canvas_kp = kp_support
w, h = canvas_kp.size
r = int(r * w)
width = int(width * w)
while len(pixels_in_queue) > 0 and curr_pixel != state['prev_clicked']:
pixel = pixels_in_queue.pop()
state['prev_clicked'] = pixel
closest_point = min(state['kp_src'],
key=lambda p: (p[0] - pixel[0]) ** 2 +
(p[1] - pixel[1]) ** 2)
closest_point_index = state['kp_src'].index(closest_point)
draw_limb = ImageDraw.Draw(canvas_kp)
if state['color_idx'] < len(COLORS):
c = COLORS[state['color_idx']]
else:
c = random.choices(range(256), k=3)
leftUpPoint = (closest_point[1] - r, closest_point[0] - r)
rightDownPoint = (closest_point[1] + r, closest_point[0] + r)
twoPointList = [leftUpPoint, rightDownPoint]
draw_limb.ellipse(twoPointList, fill=tuple(c))
if state['count'] == 0:
state['prev_pt'] = closest_point[1], closest_point[0]
state['prev_pt_idx'] = closest_point_index
state['count'] = state['count'] + 1
else:
if state['prev_pt_idx'] != closest_point_index:
# Create Line and add Limb
draw_limb.line(
[state['prev_pt'], (closest_point[1], closest_point[0])],
fill=tuple(c),
width=width)
state['skeleton'].append(
(state['prev_pt_idx'], closest_point_index))
state['color_idx'] = state['color_idx'] + 1
else:
draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
state['count'] = 0
return canvas_kp, state
def set_query(support_img, state, example=False):
if not example:
state['skeleton'].clear()
state['kp_src'].clear()
state['original_support_image'] = np.array(support_img)[:, :, ::-1].copy()
width, height = support_img.size
support_img = support_img.resize((width // 4, width // 4),
Image.Resampling.LANCZOS)
return support_img, support_img, state
with gr.Blocks() as demo:
state = gr.State({
'kp_src': [],
'skeleton': [],
'count': 0,
'color_idx': 0,
'prev_pt': None,
'prev_pt_idx': None,
'prev_clicked': None,
'original_support_image': None,
})
gr.Markdown('''
# Pose Anything Demo
We present a novel approach to category agnostic pose estimation that
leverages the inherent geometrical relations between keypoints through a
newly designed Graph Transformer Decoder. By capturing and incorporating
this crucial structural information, our method enhances the accuracy of
keypoint localization, marking a significant departure from conventional
CAPE techniques that treat keypoints as isolated entities.
### [Paper](https://arxiv.org/abs/2311.17891) | [Official Repo](https://github.com/orhir/PoseAnything)
## Instructions
1. Upload an image of the object you want to pose on the **left** image.
2. Click on the **left** image to mark keypoints.
3. Click on the keypoints on the **right** image to mark limbs.
4. Upload an image of the object you want to pose to the query image (
**bottom**).
5. Click **Evaluate** to pose the query image.
''')
with gr.Row():
support_img = gr.Image(label="Support Image",
type="pil",
info='Click to mark keypoints').style(
height=400, width=400)
posed_support = gr.Image(label="Posed Support Image",
type="pil",
interactive=False).style(height=400,
width=400)
with gr.Row():
query_img = gr.Image(label="Query Image",
type="pil").style(height=400, width=400)
with gr.Row():
eval_btn = gr.Button(value="Evaluate")
with gr.Row():
output_img = gr.Plot(label="Output Image", height=400, width=400)
with gr.Row():
gr.Markdown("## Examples")
with gr.Row():
gr.Examples(
examples=[
['examples/dog2.png',
'examples/dog2.png',
'examples/dog1.png',
{'kp_src': [(50, 58), (51, 78), (66, 57), (118, 79),
(154, 79), (217, 74), (218, 103), (156, 104),
(152, 151), (215, 162), (213, 191),
(152, 174), (108, 171)],
'skeleton': [(0, 1), (1, 2), (0, 2), (3, 4), (4, 5),
(3, 7), (7, 6), (3, 12), (12, 8), (8, 9),
(12, 11), (11, 10)], 'count': 0,
'color_idx': 0, 'prev_pt': (174, 152),
'prev_pt_idx': 11, 'prev_clicked': (207, 186),
'original_support_image': None,
}
],
['examples/sofa1.jpg',
'examples/sofa1.jpg',
'examples/sofa2.jpg',
{
'kp_src': [(82, 28), (65, 30), (52, 26), (65, 50),
(84, 52), (53, 54), (43, 52), (45, 71),
(81, 69), (77, 39), (57, 43), (58, 64),
(46, 42), (49, 65)],
'skeleton': [(0, 1), (3, 1), (3, 4), (10, 9), (11, 8),
(1, 10), (10, 11), (11, 3), (1, 2), (7, 6),
(5, 13), (5, 3), (13, 11), (12, 10), (12, 2),
(6, 10), (7, 11)], 'count': 0,
'color_idx': 23, 'prev_pt': (71, 45), 'prev_pt_idx': 7,
'prev_clicked': (56, 63),
'original_support_image': None,
}],
['examples/person1.jpeg',
'examples/person1.jpeg',
'examples/person2.jpeg',
{
'kp_src': [(121, 95), (122, 160), (154, 130), (184, 106),
(181, 153)],
'skeleton': [(0, 1), (1, 2), (0, 2), (2, 3), (2, 4),
(4, 3)], 'count': 0, 'color_idx': 6,
'prev_pt': (153, 181), 'prev_pt_idx': 4,
'prev_clicked': (181, 108),
'original_support_image': None,
}]
],
inputs=[support_img, posed_support, query_img, state],
outputs=[support_img, posed_support, query_img, state],
fn=update_examples,
run_on_click=True,
)
support_img.select(get_select_coords,
[support_img, posed_support, state],
[support_img, posed_support, state])
support_img.upload(set_query,
inputs=[support_img, state],
outputs=[support_img, posed_support, state])
posed_support.select(get_limbs,
[posed_support, state],
[posed_support, state])
eval_btn.click(fn=process,
inputs=[query_img, state],
outputs=[output_img, state])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pose Anything Demo')
parser.add_argument('--checkpoint',
help='checkpoint path',
default='1shot-swin_graph_split1.pth')
args = parser.parse_args()
checkpoint_path = args.checkpoint
print("Loading checkpoint from {}".format(checkpoint_path))
print(os.path.exists(checkpoint_path))
demo.launch()
|