File size: 5,363 Bytes
241adf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
log_level = 'INFO'
load_from = None
resume_from = None
dist_params = dict(backend='nccl')
workflow = [('train', 1)]
checkpoint_config = dict(interval=20)
evaluation = dict(
    interval=25,
    metric=['PCK', 'NME', 'AUC', 'EPE'],
    key_indicator='PCK',
    gpu_collect=True,
    res_folder='')
optimizer = dict(
    type='Adam',
    lr=1e-5,
)

optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=1000,
    warmup_ratio=0.001,
    step=[160, 180])
total_epochs = 200
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        dict(type='TensorboardLoggerHook')
    ])

channel_cfg = dict(
    num_output_channels=1,
    dataset_joints=1,
    dataset_channel=[
        [
            0,
        ],
    ],
    inference_channel=[
        0,
    ],
    max_kpt_num=100)

# model settings
model = dict(
    type='PoseAnythingModel',
    pretrained='pretrained/swinv2_tiny_patch4_window16_256.pth',
    encoder_config=dict(
        type='SwinTransformerV2',
        embed_dim=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=16,
        drop_path_rate=0.2,
        img_size=256,
        upsample="bilinear"
    ),
    keypoint_head=dict(
        type='PoseHead',
        in_channels=768,
        transformer=dict(
            type='EncoderDecoder',
            d_model=256,
            nhead=8,
            num_encoder_layers=3,
            num_decoder_layers=3,
            graph_decoder='pre',
            dim_feedforward=768,
            dropout=0.1,
            similarity_proj_dim=256,
            dynamic_proj_dim=128,
            activation="relu",
            normalize_before=False,
            return_intermediate_dec=True),
        share_kpt_branch=False,
        num_decoder_layer=3,
        with_heatmap_loss=True,
        
        heatmap_loss_weight=2.0,
        support_order_dropout=-1,
        positional_encoding=dict(
            type='SinePositionalEncoding', num_feats=128, normalize=True)),
    # training and testing settings
    train_cfg=dict(),
    test_cfg=dict(
        flip_test=False,
        post_process='default',
        shift_heatmap=True,
        modulate_kernel=11))

data_cfg = dict(
    image_size=[256, 256],
    heatmap_size=[64, 64],
    num_output_channels=channel_cfg['num_output_channels'],
    num_joints=channel_cfg['dataset_joints'],
    dataset_channel=channel_cfg['dataset_channel'],
    inference_channel=channel_cfg['inference_channel'])

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='TopDownGetRandomScaleRotation', rot_factor=15,
        scale_factor=0.15),
    dict(type='TopDownAffineFewShot'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(type='TopDownGenerateTargetFewShot', sigma=1),
    dict(
        type='Collect',
        keys=['img', 'target', 'target_weight'],
        meta_keys=[
            'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale',
            'rotation', 'bbox_score', 'flip_pairs', 'category_id', 'skeleton',
        ]),
]

valid_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='TopDownAffineFewShot'),
    dict(type='ToTensor'),
    dict(
        type='NormalizeTensor',
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225]),
    dict(type='TopDownGenerateTargetFewShot', sigma=1),
    dict(
        type='Collect',
        keys=['img', 'target', 'target_weight'],
        meta_keys=[
            'image_file', 'joints_3d', 'joints_3d_visible', 'center', 'scale', 'rotation', 'bbox_score',
            'flip_pairs', 'category_id',
            'skeleton',
        ]),
]

test_pipeline = valid_pipeline

data_root = 'data/mp100'
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=8,
    train=dict(
        type='TransformerPoseDataset',
        ann_file=f'{data_root}/annotations/mp100_split3_train.json',
        img_prefix=f'{data_root}/images/',
        # img_prefix=f'{data_root}',
        data_cfg=data_cfg,
        valid_class_ids=None,
        max_kpt_num=channel_cfg['max_kpt_num'],
        num_shots=5,
        pipeline=train_pipeline),
    val=dict(
        type='TransformerPoseDataset',
        ann_file=f'{data_root}/annotations/mp100_split3_val.json',
        img_prefix=f'{data_root}/images/',
        # img_prefix=f'{data_root}',
        data_cfg=data_cfg,
        valid_class_ids=None,
        max_kpt_num=channel_cfg['max_kpt_num'],
        num_shots=5,
        num_queries=15,
        num_episodes=100,
        pipeline=valid_pipeline),
    test=dict(
        type='TestPoseDataset',
        ann_file=f'{data_root}/annotations/mp100_split3_test.json',
        img_prefix=f'{data_root}/images/',
        # img_prefix=f'{data_root}',
        data_cfg=data_cfg,
        valid_class_ids=None,
        max_kpt_num=channel_cfg['max_kpt_num'],
        num_shots=5,
        num_queries=15,
        num_episodes=200,
        pck_threshold_list=[0.05, 0.10, 0.15, 0.2, 0.25],
        pipeline=test_pipeline),
)
vis_backends = [
    dict(type='LocalVisBackend'),
    dict(type='TensorboardVisBackend'),
]
visualizer = dict(
    type='PoseLocalVisualizer', vis_backends=vis_backends, name='visualizer')

shuffle_cfg = dict(interval=1)