Spaces:
Running
Running
File size: 12,912 Bytes
241adf2 e3ff5a8 43a0c69 241adf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import argparse
# Copyright (c) OpenMMLab. All rights reserved.
import os
import random
os.system('python setup.py develop')
import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw, Image
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
from demo import Resize_Pad
from models import *
import matplotlib
matplotlib.use('agg')
def plot_results(support_img, query_img, support_kp, support_w, query_kp,
query_w, skeleton,
initial_proposals, prediction, radius=6):
h, w, c = support_img.shape
prediction = prediction[-1].cpu().numpy() * h
query_img = (query_img - np.min(query_img)) / (
np.max(query_img) - np.min(query_img))
for id, (img, w, keypoint) in enumerate(zip([query_img],
[query_w],
[prediction])):
f, axes = plt.subplots()
plt.imshow(img)
for k in range(keypoint.shape[0]):
if w[k] > 0:
kp = keypoint[k, :2]
c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
patch = plt.Circle(kp, radius, color=c)
axes.add_patch(patch)
axes.text(kp[0], kp[1], k)
plt.draw()
for l, limb in enumerate(skeleton):
kp = keypoint[:, :2]
if l > len(COLORS) - 1:
c = [x / 255 for x in random.sample(range(0, 255), 3)]
else:
c = [x / 255 for x in COLORS[l]]
if w[limb[0]] > 0 and w[limb[1]] > 0:
patch = plt.Line2D([kp[limb[0], 0], kp[limb[1], 0]],
[kp[limb[0], 1], kp[limb[1], 1]],
linewidth=6, color=c, alpha=0.6)
axes.add_artist(patch)
plt.axis('off') # command for hiding the axis.
plt.subplots_adjust(0, 0, 1, 1, 0, 0)
return plt
COLORS = [
[255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0],
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255],
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255],
[255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]
]
kp_src = []
skeleton = []
count = 0
color_idx = 0
prev_pt = None
prev_pt_idx = None
prev_clicked = None
original_support_image = None
checkpoint_path = ''
def process(query_img,
cfg_path='configs/demo_b.py'):
global skeleton
cfg = Config.fromfile(cfg_path)
kp_src_np = np.array(kp_src).copy().astype(np.float32)
kp_src_np[:, 0] = kp_src_np[:, 0] / 128. * cfg.model.encoder_config.img_size
kp_src_np[:, 1] = kp_src_np[:, 1] / 128. * cfg.model.encoder_config.img_size
kp_src_np = np.flip(kp_src_np, 1).copy()
kp_src_tensor = torch.tensor(kp_src_np).float()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Resize_Pad(cfg.model.encoder_config.img_size,
cfg.model.encoder_config.img_size)])
if len(skeleton) == 0:
skeleton = [(0, 0)]
support_img = preprocess(original_support_image).flip(0)[None]
np_query = np.array(query_img)[:, :, ::-1].copy()
q_img = preprocess(np_query).flip(0)[None]
# Create heatmap from keypoints
genHeatMap = TopDownGenerateTargetFewShot()
data_cfg = cfg.data_cfg
data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size,
cfg.model.encoder_config.img_size])
data_cfg['joint_weights'] = None
data_cfg['use_different_joint_weights'] = False
kp_src_3d = torch.concatenate(
(kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
kp_src_3d_weight = torch.concatenate(
(torch.ones_like(kp_src_tensor),
torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
kp_src_3d,
kp_src_3d_weight,
sigma=1)
target_s = torch.tensor(target_s).float()[None]
target_weight_s = torch.ones_like(
torch.tensor(target_weight_s).float()[None])
data = {
'img_s': [support_img],
'img_q': q_img,
'target_s': [target_s],
'target_weight_s': [target_weight_s],
'target_q': None,
'target_weight_q': None,
'return_loss': False,
'img_metas': [{'sample_skeleton': [skeleton],
'query_skeleton': skeleton,
'sample_joints_3d': [kp_src_3d],
'query_joints_3d': kp_src_3d,
'sample_center': [kp_src_tensor.mean(dim=0)],
'query_center': kp_src_tensor.mean(dim=0),
'sample_scale': [
kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0]],
'query_scale': kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0],
'sample_rotation': [0],
'query_rotation': 0,
'sample_bbox_score': [1],
'query_bbox_score': 1,
'query_image_file': '',
'sample_image_file': [''],
}]
}
# Load model
model = build_posenet(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, checkpoint_path, map_location='cpu')
model.eval()
with torch.no_grad():
outputs = model(**data)
# visualize results
vis_s_weight = target_weight_s[0]
vis_q_weight = target_weight_s[0]
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
support_kp = kp_src_3d
out = plot_results(vis_s_image,
vis_q_image,
support_kp,
vis_s_weight,
None,
vis_q_weight,
skeleton,
None,
torch.tensor(outputs['points']).squeeze(0),
)
return out
with gr.Blocks() as demo:
gr.Markdown('''
# Pose Anything Demo
We present a novel approach to category agnostic pose estimation that leverages the inherent geometrical relations between keypoints through a newly designed Graph Transformer Decoder. By capturing and incorporating this crucial structural information, our method enhances the accuracy of keypoint localization, marking a significant departure from conventional CAPE techniques that treat keypoints as isolated entities.
### [Paper](https://arxiv.org/abs/2311.17891) | [Official Repo](https://github.com/orhir/PoseAnything)
![](/file=gradio_teaser.png)
## Instructions
1. Upload an image of the object you want to pose on the **left** image.
2. Click on the **left** image to mark keypoints.
3. Click on the keypoints on the **right** image to mark limbs.
4. Upload an image of the object you want to pose to the query image (**bottom**).
5. Click **Evaluate** to pose the query image.
''')
with gr.Row():
support_img = gr.Image(label="Support Image",
type="pil",
info='Click to mark keypoints').style(
height=256, width=256)
posed_support = gr.Image(label="Posed Support Image",
type="pil",
interactive=False).style(height=256, width=256)
with gr.Row():
query_img = gr.Image(label="Query Image",
type="pil").style(height=256, width=256)
with gr.Row():
eval_btn = gr.Button(value="Evaluate")
with gr.Row():
output_img = gr.Plot(label="Output Image", height=256, width=256)
def get_select_coords(kp_support,
limb_support,
evt: gr.SelectData,
r=0.015):
pixels_in_queue = set()
pixels_in_queue.add((evt.index[1], evt.index[0]))
while len(pixels_in_queue) > 0:
pixel = pixels_in_queue.pop()
if pixel[0] is not None and pixel[
1] is not None and pixel not in kp_src:
kp_src.append(pixel)
else:
print("Invalid pixel")
if limb_support is None:
canvas_limb = kp_support
else:
canvas_limb = limb_support
canvas_kp = kp_support
w, h = canvas_kp.size
draw_pose = ImageDraw.Draw(canvas_kp)
draw_limb = ImageDraw.Draw(canvas_limb)
r = int(r * w)
leftUpPoint = (pixel[1] - r, pixel[0] - r)
rightDownPoint = (pixel[1] + r, pixel[0] + r)
twoPointList = [leftUpPoint, rightDownPoint]
draw_pose.ellipse(twoPointList, fill=(255, 0, 0, 255))
draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
return canvas_kp, canvas_limb
def get_limbs(kp_support,
evt: gr.SelectData,
r=0.02, width=0.02):
global count, color_idx, prev_pt, skeleton, prev_pt_idx, prev_clicked
curr_pixel = (evt.index[1], evt.index[0])
pixels_in_queue = set()
pixels_in_queue.add((evt.index[1], evt.index[0]))
canvas_kp = kp_support
w, h = canvas_kp.size
r = int(r * w)
width = int(width * w)
while (len(pixels_in_queue) > 0 and
curr_pixel != prev_clicked and
len(kp_src) > 0):
pixel = pixels_in_queue.pop()
prev_clicked = pixel
closest_point = min(kp_src,
key=lambda p: (p[0] - pixel[0]) ** 2 +
(p[1] - pixel[1]) ** 2)
closest_point_index = kp_src.index(closest_point)
draw_limb = ImageDraw.Draw(canvas_kp)
if color_idx < len(COLORS):
c = COLORS[color_idx]
else:
c = random.choices(range(256), k=3)
leftUpPoint = (closest_point[1] - r, closest_point[0] - r)
rightDownPoint = (closest_point[1] + r, closest_point[0] + r)
twoPointList = [leftUpPoint, rightDownPoint]
draw_limb.ellipse(twoPointList, fill=tuple(c))
if count == 0:
prev_pt = closest_point[1], closest_point[0]
prev_pt_idx = closest_point_index
count = count + 1
else:
if prev_pt_idx != closest_point_index:
# Create Line and add Limb
draw_limb.line([prev_pt, (closest_point[1], closest_point[0])],
fill=tuple(c),
width=width)
skeleton.append((prev_pt_idx, closest_point_index))
color_idx = color_idx + 1
else:
draw_limb.ellipse(twoPointList, fill=(255, 0, 0, 255))
count = 0
return canvas_kp
def set_query(support_img):
global original_support_image
skeleton.clear()
kp_src.clear()
original_support_image = np.array(support_img)[:, :, ::-1].copy()
support_img = support_img.resize((128, 128), Image.Resampling.LANCZOS)
return support_img, support_img
support_img.select(get_select_coords,
[support_img, posed_support],
[support_img, posed_support],
)
support_img.upload(set_query,
inputs=support_img,
outputs=[support_img,posed_support])
posed_support.select(get_limbs,
posed_support,
posed_support)
eval_btn.click(fn=process,
inputs=[query_img],
outputs=output_img)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Pose Anything Demo')
parser.add_argument('--checkpoint',
help='checkpoint path',
default='https://huggingface.co/orhir/PoseAnything/blob/main/1shot-swin_graph_split1.pth')
args = parser.parse_args()
checkpoint_path = args.checkpoint
demo.launch()
|