|
|
|
import logging |
|
import pathlib |
|
import re |
|
import sys |
|
from dataclasses import dataclass, field |
|
from typing import Any, Callable, Dict, List, Optional, Set, Union |
|
|
|
import datasets |
|
import librosa |
|
import numpy as np |
|
import torch |
|
from lang_trans import arabic |
|
from packaging import version |
|
from torch import nn |
|
|
|
from transformers import ( |
|
HfArgumentParser, |
|
Trainer, |
|
TrainingArguments, |
|
Wav2Vec2CTCTokenizer, |
|
Wav2Vec2FeatureExtractor, |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
is_apex_available, |
|
trainer_utils, |
|
) |
|
|
|
|
|
if is_apex_available(): |
|
from apex import amp |
|
|
|
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): |
|
_is_native_amp_available = True |
|
from torch.cuda.amp import autocast |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. |
|
""" |
|
|
|
model_name_or_path: str = field( |
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
freeze_feature_extractor: Optional[bool] = field( |
|
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} |
|
) |
|
verbose_logging: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Whether to log verbose messages or not."}, |
|
) |
|
|
|
|
|
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments): |
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
) |
|
logging_level = logging.WARNING |
|
if model_args.verbose_logging: |
|
logging_level = logging.DEBUG |
|
elif trainer_utils.is_main_process(training_args.local_rank): |
|
logging_level = logging.INFO |
|
logger.setLevel(logging_level) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
|
|
Using `HfArgumentParser` we can turn this class |
|
into argparse arguments to be able to specify them on |
|
the command line. |
|
""" |
|
|
|
dataset_name: str = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_split_name: Optional[str] = field( |
|
default="train", |
|
metadata={ |
|
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" |
|
}, |
|
) |
|
validation_split_name: Optional[str] = field( |
|
default="validation", |
|
metadata={ |
|
"help": ( |
|
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" |
|
) |
|
}, |
|
) |
|
target_text_column: Optional[str] = field( |
|
default="text", |
|
metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"}, |
|
) |
|
speech_file_column: Optional[str] = field( |
|
default="file", |
|
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"}, |
|
) |
|
target_feature_extractor_sampling_rate: Optional[bool] = field( |
|
default=False, |
|
metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."}, |
|
) |
|
max_duration_in_seconds: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."}, |
|
) |
|
orthography: Optional[str] = field( |
|
default="librispeech", |
|
metadata={ |
|
"help": ( |
|
"Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or" |
|
" 'buckwalter'." |
|
) |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
|
|
|
|
@dataclass |
|
class Orthography: |
|
""" |
|
Orthography scheme used for text normalization and tokenization. |
|
|
|
Args: |
|
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`): |
|
Whether or not to accept lowercase input and lowercase the output when decoding. |
|
vocab_file (:obj:`str`, `optional`): |
|
File containing the vocabulary. |
|
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`): |
|
The token used for delimiting words; it needs to be in the vocabulary. |
|
translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`): |
|
Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " "). |
|
words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`): |
|
Words to remove when preprocessing text (e.g., "sil"). |
|
untransliterator (:obj:`Callable[[str], str]`, `optional`): |
|
Function that untransliterates text back into native writing system. |
|
""" |
|
|
|
do_lower_case: bool = False |
|
vocab_file: Optional[str] = None |
|
word_delimiter_token: Optional[str] = "|" |
|
translation_table: Optional[Dict[str, str]] = field(default_factory=dict) |
|
words_to_remove: Optional[Set[str]] = field(default_factory=set) |
|
untransliterator: Optional[Callable[[str], str]] = None |
|
|
|
@classmethod |
|
def from_name(cls, name: str): |
|
if name == "librispeech": |
|
return cls() |
|
if name == "timit": |
|
return cls( |
|
do_lower_case=True, |
|
|
|
translation_table=str.maketrans({"-": " "}), |
|
) |
|
if name == "buckwalter": |
|
translation_table = { |
|
"-": " ", |
|
"^": "v", |
|
} |
|
return cls( |
|
vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"), |
|
word_delimiter_token="/", |
|
translation_table=str.maketrans(translation_table), |
|
words_to_remove={"sil"}, |
|
untransliterator=arabic.buckwalter.untransliterate, |
|
) |
|
raise ValueError(f"Unsupported orthography: '{name}'.") |
|
|
|
def preprocess_for_training(self, text: str) -> str: |
|
|
|
if len(self.translation_table) > 0: |
|
text = text.translate(self.translation_table) |
|
if len(self.words_to_remove) == 0: |
|
text = " ".join(text.split()) |
|
else: |
|
text = " ".join(w for w in text.split() if w not in self.words_to_remove) |
|
return text |
|
|
|
def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor: |
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( |
|
model_args.model_name_or_path, cache_dir=model_args.cache_dir |
|
) |
|
if self.vocab_file: |
|
tokenizer = Wav2Vec2CTCTokenizer( |
|
self.vocab_file, |
|
cache_dir=model_args.cache_dir, |
|
do_lower_case=self.do_lower_case, |
|
word_delimiter_token=self.word_delimiter_token, |
|
) |
|
else: |
|
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
do_lower_case=self.do_lower_case, |
|
word_delimiter_token=self.word_delimiter_token, |
|
) |
|
return Wav2Vec2Processor(feature_extractor, tokenizer) |
|
|
|
|
|
@dataclass |
|
class DataCollatorCTCWithPadding: |
|
""" |
|
Data collator that will dynamically pad the inputs received. |
|
Args: |
|
processor (:class:`~transformers.Wav2Vec2Processor`) |
|
The processor used for proccessing the data. |
|
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding index) |
|
among: |
|
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the |
|
maximum acceptable input length for the model if that argument is not provided. |
|
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of |
|
different lengths). |
|
max_length (:obj:`int`, `optional`): |
|
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). |
|
max_length_labels (:obj:`int`, `optional`): |
|
Maximum length of the ``labels`` returned list and optionally padding length (see above). |
|
pad_to_multiple_of (:obj:`int`, `optional`): |
|
If set will pad the sequence to a multiple of the provided value. |
|
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= |
|
7.5 (Volta). |
|
""" |
|
|
|
processor: Wav2Vec2Processor |
|
padding: Union[bool, str] = True |
|
max_length: Optional[int] = None |
|
max_length_labels: Optional[int] = None |
|
pad_to_multiple_of: Optional[int] = None |
|
pad_to_multiple_of_labels: Optional[int] = None |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: |
|
|
|
|
|
input_features = [{"input_values": feature["input_values"]} for feature in features] |
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
|
|
batch = self.processor.pad( |
|
input_features, |
|
padding=self.padding, |
|
max_length=self.max_length, |
|
pad_to_multiple_of=self.pad_to_multiple_of, |
|
return_tensors="pt", |
|
) |
|
labels_batch = self.processor.pad( |
|
labels=label_features, |
|
padding=self.padding, |
|
max_length=self.max_length_labels, |
|
pad_to_multiple_of=self.pad_to_multiple_of_labels, |
|
return_tensors="pt", |
|
) |
|
|
|
|
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) |
|
|
|
batch["labels"] = labels |
|
|
|
return batch |
|
|
|
|
|
class CTCTrainer(Trainer): |
|
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: |
|
""" |
|
Perform a training step on a batch of inputs. |
|
|
|
Subclass and override to inject custom behavior. |
|
|
|
Args: |
|
model (:obj:`nn.Module`): |
|
The model to train. |
|
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): |
|
The inputs and targets of the model. |
|
|
|
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the |
|
argument :obj:`labels`. Check your model's documentation for all accepted arguments. |
|
|
|
Return: |
|
:obj:`torch.Tensor`: The tensor with training loss on this batch. |
|
""" |
|
|
|
model.train() |
|
inputs = self._prepare_inputs(inputs) |
|
|
|
if self.use_amp: |
|
with autocast(): |
|
loss = self.compute_loss(model, inputs) |
|
else: |
|
loss = self.compute_loss(model, inputs) |
|
|
|
if self.args.n_gpu > 1: |
|
if model.module.config.ctc_loss_reduction == "mean": |
|
loss = loss.mean() |
|
elif model.module.config.ctc_loss_reduction == "sum": |
|
loss = loss.sum() / (inputs["labels"] >= 0).sum() |
|
else: |
|
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") |
|
|
|
if self.args.gradient_accumulation_steps > 1: |
|
loss = loss / self.args.gradient_accumulation_steps |
|
|
|
if self.use_amp: |
|
self.scaler.scale(loss).backward() |
|
elif self.use_apex: |
|
with amp.scale_loss(loss, self.optimizer) as scaled_loss: |
|
scaled_loss.backward() |
|
elif self.deepspeed: |
|
self.deepspeed.backward(loss) |
|
else: |
|
loss.backward() |
|
|
|
return loss.detach() |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) |
|
|
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
configure_logger(model_args, training_args) |
|
|
|
orthography = Orthography.from_name(data_args.orthography.lower()) |
|
processor = orthography.create_processor(model_args) |
|
model = Wav2Vec2ForCTC.from_pretrained( |
|
model_args.model_name_or_path, |
|
cache_dir=model_args.cache_dir, |
|
gradient_checkpointing=training_args.gradient_checkpointing, |
|
vocab_size=len(processor.tokenizer), |
|
) |
|
|
|
train_dataset = datasets.load_dataset( |
|
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name |
|
) |
|
val_dataset = datasets.load_dataset( |
|
data_args.dataset_name, data_args.dataset_config_name, split=data_args.validation_split_name |
|
) |
|
|
|
wer_metric = datasets.load_metric("wer") |
|
target_sr = processor.feature_extractor.sampling_rate if data_args.target_feature_extractor_sampling_rate else None |
|
vocabulary_chars_str = "".join(t for t in processor.tokenizer.get_vocab().keys() if len(t) == 1) |
|
vocabulary_text_cleaner = re.compile( |
|
f"[^\s{re.escape(vocabulary_chars_str)}]", |
|
flags=re.IGNORECASE if processor.tokenizer.do_lower_case else 0, |
|
) |
|
text_updates = [] |
|
|
|
def prepare_example(example): |
|
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr) |
|
if data_args.max_duration_in_seconds is not None: |
|
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"] |
|
|
|
updated_text = orthography.preprocess_for_training(example[data_args.target_text_column]) |
|
updated_text = vocabulary_text_cleaner.sub("", updated_text) |
|
if updated_text != example[data_args.target_text_column]: |
|
text_updates.append((example[data_args.target_text_column], updated_text)) |
|
example[data_args.target_text_column] = updated_text |
|
return example |
|
|
|
train_dataset = train_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) |
|
val_dataset = val_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column]) |
|
|
|
if data_args.max_duration_in_seconds is not None: |
|
|
|
def filter_by_max_duration(example): |
|
return example["duration_in_seconds"] <= data_args.max_duration_in_seconds |
|
|
|
old_train_size = len(train_dataset) |
|
old_val_size = len(val_dataset) |
|
train_dataset = train_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) |
|
val_dataset = val_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"]) |
|
if len(train_dataset) > old_train_size: |
|
logger.warning( |
|
f"Filtered out {len(train_dataset) - old_train_size} train example(s) longer than" |
|
f" {data_args.max_duration_in_seconds} second(s)." |
|
) |
|
if len(val_dataset) > old_val_size: |
|
logger.warning( |
|
f"Filtered out {len(val_dataset) - old_val_size} validation example(s) longer than" |
|
f" {data_args.max_duration_in_seconds} second(s)." |
|
) |
|
logger.info(f"Split sizes: {len(train_dataset)} train and {len(val_dataset)} validation.") |
|
|
|
logger.warning(f"Updated {len(text_updates)} transcript(s) using '{data_args.orthography}' orthography rules.") |
|
if logger.isEnabledFor(logging.DEBUG): |
|
for original_text, updated_text in text_updates: |
|
logger.debug(f'Updated text: "{original_text}" -> "{updated_text}"') |
|
text_updates = None |
|
|
|
def prepare_dataset(batch): |
|
|
|
assert ( |
|
len(set(batch["sampling_rate"])) == 1 |
|
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}." |
|
|
|
processed_batch = processor( |
|
audio=batch["speech"], text=batch[data_args.target_text_column], sampling_rate=batch["sampling_rate"][0] |
|
) |
|
batch.update(processed_batch) |
|
return batch |
|
|
|
train_dataset = train_dataset.map( |
|
prepare_dataset, |
|
batch_size=training_args.per_device_train_batch_size, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
val_dataset = val_dataset.map( |
|
prepare_dataset, |
|
batch_size=training_args.per_device_train_batch_size, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
) |
|
|
|
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True) |
|
|
|
def compute_metrics(pred): |
|
pred_logits = pred.predictions |
|
pred_ids = np.argmax(pred_logits, axis=-1) |
|
|
|
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id |
|
|
|
pred_str = processor.batch_decode(pred_ids) |
|
|
|
label_str = processor.batch_decode(pred.label_ids, group_tokens=False) |
|
if logger.isEnabledFor(logging.DEBUG): |
|
for reference, predicted in zip(label_str, pred_str): |
|
logger.debug(f'reference: "{reference}"') |
|
logger.debug(f'predicted: "{predicted}"') |
|
if orthography.untransliterator is not None: |
|
logger.debug(f'reference (untransliterated): "{orthography.untransliterator(reference)}"') |
|
logger.debug(f'predicted (untransliterated): "{orthography.untransliterator(predicted)}"') |
|
|
|
wer = wer_metric.compute(predictions=pred_str, references=label_str) |
|
|
|
return {"wer": wer} |
|
|
|
if model_args.freeze_feature_extractor: |
|
model.freeze_feature_extractor() |
|
|
|
trainer = CTCTrainer( |
|
model=model, |
|
data_collator=data_collator, |
|
args=training_args, |
|
compute_metrics=compute_metrics, |
|
train_dataset=train_dataset, |
|
eval_dataset=val_dataset, |
|
tokenizer=processor.feature_extractor, |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|