|
"""Finetuning script for RAG models. Adapted from examples.seq2seq.finetune.py""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import sys |
|
import time |
|
from collections import defaultdict |
|
from pathlib import Path |
|
from typing import Any, Dict, List, Tuple |
|
|
|
import numpy as np |
|
import pytorch_lightning as pl |
|
import torch |
|
import torch.distributed as dist |
|
import torch.distributed as torch_distrib |
|
from pytorch_lightning.plugins.training_type import DDPPlugin |
|
from torch.utils.data import DataLoader |
|
|
|
from transformers import ( |
|
AutoConfig, |
|
AutoTokenizer, |
|
BartForConditionalGeneration, |
|
BatchEncoding, |
|
RagConfig, |
|
RagSequenceForGeneration, |
|
RagTokenForGeneration, |
|
RagTokenizer, |
|
T5ForConditionalGeneration, |
|
) |
|
from transformers import logging as transformers_logging |
|
from transformers.integrations import is_ray_available |
|
|
|
|
|
if is_ray_available(): |
|
import ray |
|
from distributed_ray_retriever import RagRayDistributedRetriever, RayRetriever |
|
|
|
from callbacks_rag import ( |
|
get_checkpoint_callback, |
|
get_early_stopping_callback, |
|
Seq2SeqLoggingCallback, |
|
) |
|
|
|
from distributed_pytorch_retriever import RagPyTorchDistributedRetriever |
|
from utils_rag import ( |
|
calculate_exact_match, |
|
flatten_list, |
|
get_git_info, |
|
is_rag_model, |
|
lmap, |
|
pickle_save, |
|
save_git_info, |
|
save_json, |
|
set_extra_model_params, |
|
Seq2SeqDataset, |
|
) |
|
|
|
|
|
sys.path.insert(2, str(Path(__file__).resolve().parents[1])) |
|
from lightning_base import BaseTransformer, add_generic_args, generic_train |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
transformers_logging.set_verbosity_info() |
|
|
|
|
|
class AttrDict(dict): |
|
def __init__(self, *args, **kwargs): |
|
super(AttrDict, self).__init__(*args, **kwargs) |
|
self.__dict__ = self |
|
|
|
|
|
class CustomDDP(DDPPlugin): |
|
def init_ddp_connection(self, global_rank=None, world_size=None) -> None: |
|
module = self.model |
|
global_rank = global_rank if global_rank is not None else self.cluster_environment.global_rank() |
|
world_size = world_size if world_size is not None else self.cluster_environment.world_size() |
|
os.environ["MASTER_ADDR"] = self.cluster_environment.master_address() |
|
os.environ["MASTER_PORT"] = str(self.cluster_environment.master_port()) |
|
if not torch.distributed.is_initialized(): |
|
logger.info(f"initializing ddp: GLOBAL_RANK: {global_rank}, MEMBER: {global_rank + 1}/{world_size}") |
|
torch_distrib.init_process_group(self.torch_distributed_backend, rank=global_rank, world_size=world_size) |
|
|
|
if module.is_rag_model: |
|
self.distributed_port = module.hparams.distributed_port |
|
if module.distributed_retriever == "pytorch": |
|
module.model.rag.retriever.init_retrieval(self.distributed_port) |
|
elif module.distributed_retriever == "ray" and global_rank == 0: |
|
|
|
|
|
module.model.rag.retriever.init_retrieval() |
|
|
|
|
|
class GenerativeQAModule(BaseTransformer): |
|
mode = "generative_qa" |
|
loss_names = ["loss"] |
|
metric_names = ["em"] |
|
val_metric = "em" |
|
|
|
def __init__(self, hparams, **kwargs): |
|
|
|
if isinstance(hparams, dict): |
|
hparams = AttrDict(hparams) |
|
if hparams.model_type == "rag_sequence": |
|
self.model_class = RagSequenceForGeneration |
|
elif hparams.model_type == "rag_token": |
|
self.model_class = RagTokenForGeneration |
|
elif hparams.model_type == "bart": |
|
self.model_class = BartForConditionalGeneration |
|
else: |
|
self.model_class = T5ForConditionalGeneration |
|
self.is_rag_model = is_rag_model(hparams.model_type) |
|
|
|
config_class = RagConfig if self.is_rag_model else AutoConfig |
|
config = config_class.from_pretrained(hparams.model_name_or_path) |
|
|
|
|
|
config.index_name = hparams.index_name or config.index_name |
|
config.passages_path = hparams.passages_path or config.passages_path |
|
config.index_path = hparams.index_path or config.index_path |
|
config.use_dummy_dataset = hparams.use_dummy_dataset |
|
|
|
|
|
extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "attention_dropout", "dropout") |
|
if self.is_rag_model: |
|
if hparams.prefix is not None: |
|
config.generator.prefix = hparams.prefix |
|
config.label_smoothing = hparams.label_smoothing |
|
hparams, config.generator = set_extra_model_params(extra_model_params, hparams, config.generator) |
|
if hparams.distributed_retriever == "pytorch": |
|
retriever = RagPyTorchDistributedRetriever.from_pretrained(hparams.model_name_or_path, config=config) |
|
elif hparams.distributed_retriever == "ray": |
|
|
|
retriever = RagRayDistributedRetriever.from_pretrained( |
|
hparams.model_name_or_path, hparams.actor_handles, config=config |
|
) |
|
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config, retriever=retriever) |
|
prefix = config.question_encoder.prefix |
|
else: |
|
if hparams.prefix is not None: |
|
config.prefix = hparams.prefix |
|
hparams, config = set_extra_model_params(extra_model_params, hparams, config) |
|
model = self.model_class.from_pretrained(hparams.model_name_or_path, config=config) |
|
prefix = config.prefix |
|
|
|
tokenizer = ( |
|
RagTokenizer.from_pretrained(hparams.model_name_or_path) |
|
if self.is_rag_model |
|
else AutoTokenizer.from_pretrained(hparams.model_name_or_path) |
|
) |
|
|
|
super().__init__(hparams, config=config, tokenizer=tokenizer, model=model) |
|
|
|
save_git_info(self.hparams.output_dir) |
|
self.output_dir = Path(self.hparams.output_dir) |
|
self.metrics_save_path = Path(self.output_dir) / "metrics.json" |
|
self.hparams_save_path = Path(self.output_dir) / "hparams.pkl" |
|
pickle_save(self.hparams, self.hparams_save_path) |
|
self.step_count = 0 |
|
self.metrics = defaultdict(list) |
|
|
|
self.dataset_kwargs: dict = { |
|
"data_dir": self.hparams.data_dir, |
|
"max_source_length": self.hparams.max_source_length, |
|
"prefix": prefix or "", |
|
} |
|
n_observations_per_split = { |
|
"train": self.hparams.n_train, |
|
"val": self.hparams.n_val, |
|
"test": self.hparams.n_test, |
|
} |
|
self.n_obs = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} |
|
|
|
self.target_lens = { |
|
"train": self.hparams.max_target_length, |
|
"val": self.hparams.val_max_target_length, |
|
"test": self.hparams.test_max_target_length, |
|
} |
|
assert self.target_lens["train"] <= self.target_lens["val"], f"target_lens: {self.target_lens}" |
|
assert self.target_lens["train"] <= self.target_lens["test"], f"target_lens: {self.target_lens}" |
|
|
|
self.hparams.git_sha = get_git_info()["repo_sha"] |
|
self.num_workers = hparams.num_workers |
|
self.distributed_port = self.hparams.distributed_port |
|
|
|
|
|
|
|
if hparams.gpus <= 1: |
|
if hparams.distributed_retriever == "ray": |
|
self.model.retriever.init_retrieval() |
|
elif hparams.distributed_retriever == "pytorch": |
|
self.model.retriever.init_retrieval(self.distributed_port) |
|
|
|
self.distributed_retriever = hparams.distributed_retriever |
|
|
|
def forward(self, input_ids, **kwargs): |
|
return self.model(input_ids, **kwargs) |
|
|
|
def ids_to_clean_text(self, generated_ids: List[int]): |
|
gen_text = self.tokenizer.batch_decode( |
|
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
) |
|
return lmap(str.strip, gen_text) |
|
|
|
def _step(self, batch: dict) -> Tuple: |
|
source_ids, source_mask, target_ids = batch["input_ids"], batch["attention_mask"], batch["decoder_input_ids"] |
|
|
|
rag_kwargs = {} |
|
if isinstance(self.model, T5ForConditionalGeneration): |
|
decoder_input_ids = self.model._shift_right(target_ids) |
|
lm_labels = target_ids |
|
elif isinstance(self.model, BartForConditionalGeneration): |
|
decoder_input_ids = target_ids[:, :-1].contiguous() |
|
lm_labels = target_ids[:, 1:].clone() |
|
else: |
|
assert self.is_rag_model |
|
generator = self.model.rag.generator |
|
if isinstance(generator, T5ForConditionalGeneration): |
|
decoder_start_token_id = generator.config.decoder_start_token_id |
|
decoder_input_ids = ( |
|
torch.cat( |
|
[torch.tensor([[decoder_start_token_id]] * target_ids.shape[0]).to(target_ids), target_ids], |
|
dim=1, |
|
) |
|
if target_ids.shape[0] < self.target_lens["train"] |
|
else generator._shift_right(target_ids) |
|
) |
|
elif isinstance(generator, BartForConditionalGeneration): |
|
decoder_input_ids = target_ids |
|
lm_labels = decoder_input_ids |
|
rag_kwargs["reduce_loss"] = True |
|
|
|
assert decoder_input_ids is not None |
|
|
|
outputs = self( |
|
source_ids, |
|
attention_mask=source_mask, |
|
decoder_input_ids=decoder_input_ids, |
|
use_cache=False, |
|
labels=lm_labels, |
|
**rag_kwargs, |
|
) |
|
|
|
loss = outputs["loss"] |
|
return (loss,) |
|
|
|
@property |
|
def pad(self) -> int: |
|
raise NotImplementedError("pad not implemented") |
|
|
|
def training_step(self, batch, batch_idx) -> Dict: |
|
loss_tensors = self._step(batch) |
|
|
|
logs = {name: loss.detach() for name, loss in zip(self.loss_names, loss_tensors)} |
|
|
|
tgt_pad_token_id = ( |
|
self.tokenizer.generator.pad_token_id |
|
if isinstance(self.tokenizer, RagTokenizer) |
|
else self.tokenizer.pad_token_id |
|
) |
|
src_pad_token_id = ( |
|
self.tokenizer.question_encoder.pad_token_id |
|
if isinstance(self.tokenizer, RagTokenizer) |
|
else self.tokenizer.pad_token_id |
|
) |
|
logs["tpb"] = ( |
|
batch["input_ids"].ne(src_pad_token_id).sum() + batch["decoder_input_ids"].ne(tgt_pad_token_id).sum() |
|
) |
|
|
|
return {"loss": loss_tensors[0], "log": logs} |
|
|
|
def validation_step(self, batch, batch_idx) -> Dict: |
|
return self._generative_step(batch) |
|
|
|
def validation_epoch_end(self, outputs, prefix="val") -> Dict: |
|
self.step_count += 1 |
|
losses = {k: torch.stack([x[k] for x in outputs]).mean() for k in self.loss_names} |
|
loss = losses["loss"] |
|
gen_metrics = { |
|
k: np.array([x[k] for x in outputs]).mean() for k in self.metric_names + ["gen_time", "gen_len"] |
|
} |
|
metrics_tensor: torch.FloatTensor = torch.tensor(gen_metrics[self.val_metric]).type_as(loss) |
|
gen_metrics.update({k: v.item() for k, v in losses.items()}) |
|
|
|
|
|
if dist.is_initialized(): |
|
dist.all_reduce(metrics_tensor, op=dist.ReduceOp.SUM) |
|
metrics_tensor = metrics_tensor / dist.get_world_size() |
|
gen_metrics.update({self.val_metric: metrics_tensor.item()}) |
|
|
|
losses.update(gen_metrics) |
|
metrics = {f"{prefix}_avg_{k}": x for k, x in losses.items()} |
|
metrics["step_count"] = self.step_count |
|
self.save_metrics(metrics, prefix) |
|
preds = flatten_list([x["preds"] for x in outputs]) |
|
return {"log": metrics, "preds": preds, f"{prefix}_loss": loss, f"{prefix}_{self.val_metric}": metrics_tensor} |
|
|
|
def save_metrics(self, latest_metrics, type_path) -> None: |
|
self.metrics[type_path].append(latest_metrics) |
|
save_json(self.metrics, self.metrics_save_path) |
|
|
|
def calc_generative_metrics(self, preds, target) -> Dict: |
|
return calculate_exact_match(preds, target) |
|
|
|
def _generative_step(self, batch: dict) -> dict: |
|
start_time = time.time() |
|
batch = BatchEncoding(batch).to(device=self.model.device) |
|
generated_ids = self.model.generate( |
|
batch["input_ids"], |
|
attention_mask=batch["attention_mask"], |
|
do_deduplication=False, |
|
use_cache=True, |
|
min_length=1, |
|
max_length=self.target_lens["val"], |
|
) |
|
|
|
gen_time = (time.time() - start_time) / batch["input_ids"].shape[0] |
|
preds: List[str] = self.ids_to_clean_text(generated_ids) |
|
target: List[str] = self.ids_to_clean_text(batch["decoder_input_ids"]) |
|
loss_tensors = self._step(batch) |
|
base_metrics = dict(zip(self.loss_names, loss_tensors)) |
|
gen_metrics: Dict = self.calc_generative_metrics(preds, target) |
|
|
|
summ_len = np.mean(lmap(len, generated_ids)) |
|
base_metrics.update(gen_time=gen_time, gen_len=summ_len, preds=preds, target=target, **gen_metrics) |
|
return base_metrics |
|
|
|
def test_step(self, batch, batch_idx): |
|
return self._generative_step(batch) |
|
|
|
def test_epoch_end(self, outputs): |
|
return self.validation_epoch_end(outputs, prefix="test") |
|
|
|
def get_dataset(self, type_path) -> Seq2SeqDataset: |
|
n_obs = self.n_obs[type_path] |
|
max_target_length = self.target_lens[type_path] |
|
dataset = Seq2SeqDataset( |
|
self.tokenizer, |
|
type_path=type_path, |
|
n_obs=n_obs, |
|
max_target_length=max_target_length, |
|
**self.dataset_kwargs, |
|
) |
|
return dataset |
|
|
|
def get_dataloader(self, type_path: str, batch_size: int, shuffle: bool = False) -> DataLoader: |
|
dataset = self.get_dataset(type_path) |
|
|
|
dataloader = DataLoader( |
|
dataset, |
|
batch_size=batch_size, |
|
collate_fn=dataset.collate_fn, |
|
shuffle=shuffle, |
|
num_workers=self.num_workers, |
|
) |
|
return dataloader |
|
|
|
def train_dataloader(self) -> DataLoader: |
|
dataloader = self.get_dataloader("train", batch_size=self.hparams.train_batch_size, shuffle=True) |
|
return dataloader |
|
|
|
def val_dataloader(self) -> DataLoader: |
|
return self.get_dataloader("val", batch_size=self.hparams.eval_batch_size) |
|
|
|
def test_dataloader(self) -> DataLoader: |
|
return self.get_dataloader("test", batch_size=self.hparams.eval_batch_size) |
|
|
|
@pl.utilities.rank_zero_only |
|
def on_save_checkpoint(self, checkpoint: Dict[str, Any]) -> None: |
|
save_path = self.output_dir.joinpath("checkpoint{}".format(self.step_count)) |
|
self.model.config.save_step = self.step_count |
|
self.model.save_pretrained(save_path) |
|
self.tokenizer.save_pretrained(save_path) |
|
|
|
@staticmethod |
|
def add_model_specific_args(parser, root_dir): |
|
BaseTransformer.add_model_specific_args(parser, root_dir) |
|
add_generic_args(parser, root_dir) |
|
parser.add_argument( |
|
"--max_source_length", |
|
default=128, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--max_target_length", |
|
default=25, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--val_max_target_length", |
|
default=25, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument( |
|
"--test_max_target_length", |
|
default=25, |
|
type=int, |
|
help=( |
|
"The maximum total input sequence length after tokenization. Sequences longer " |
|
"than this will be truncated, sequences shorter will be padded." |
|
), |
|
) |
|
parser.add_argument("--logger_name", type=str, choices=["default", "wandb", "wandb_shared"], default="default") |
|
parser.add_argument("--n_train", type=int, default=-1, required=False, help="# examples. -1 means use all.") |
|
parser.add_argument("--n_val", type=int, default=-1, required=False, help="# examples. -1 means use all.") |
|
parser.add_argument("--n_test", type=int, default=-1, required=False, help="# examples. -1 means use all.") |
|
parser.add_argument("--label_smoothing", type=float, default=0.0, required=False) |
|
parser.add_argument( |
|
"--prefix", |
|
type=str, |
|
default=None, |
|
help="Prefix added at the beginning of each text, typically used with T5-based models.", |
|
) |
|
parser.add_argument( |
|
"--early_stopping_patience", |
|
type=int, |
|
default=-1, |
|
required=False, |
|
help=( |
|
"-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So" |
|
" val_check_interval will effect it." |
|
), |
|
) |
|
parser.add_argument( |
|
"--distributed-port", type=int, default=-1, required=False, help="Port number for distributed training." |
|
) |
|
parser.add_argument( |
|
"--model_type", |
|
choices=["rag_sequence", "rag_token", "bart", "t5"], |
|
type=str, |
|
help=( |
|
"RAG model type: sequence or token, if none specified, the type is inferred from the" |
|
" model_name_or_path" |
|
), |
|
) |
|
return parser |
|
|
|
@staticmethod |
|
def add_retriever_specific_args(parser): |
|
parser.add_argument( |
|
"--index_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Name of the index to use: 'hf' for a canonical dataset from the datasets library (default), 'custom'" |
|
" for a local index, or 'legacy' for the orignal one)" |
|
), |
|
) |
|
parser.add_argument( |
|
"--passages_path", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Path to the dataset of passages for custom index. More info about custom indexes in the RagRetriever" |
|
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" |
|
), |
|
) |
|
parser.add_argument( |
|
"--index_path", |
|
type=str, |
|
default=None, |
|
help=( |
|
"Path to the faiss index for custom index. More info about custom indexes in the RagRetriever" |
|
" documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" |
|
), |
|
) |
|
parser.add_argument( |
|
"--distributed_retriever", |
|
choices=["ray", "pytorch"], |
|
type=str, |
|
default="pytorch", |
|
help=( |
|
"What implementation to use for distributed retriever? If " |
|
"pytorch is selected, the index is loaded on training " |
|
"worker 0, and torch.distributed is used to handle " |
|
"communication between training worker 0, and the other " |
|
"training workers. If ray is selected, the Ray library is " |
|
"used to create load the index on separate processes, " |
|
"and Ray handles the communication between the training " |
|
"workers and the retrieval actors." |
|
), |
|
) |
|
parser.add_argument( |
|
"--use_dummy_dataset", |
|
type=bool, |
|
default=False, |
|
help=( |
|
"Whether to use the dummy version of the dataset index. More info about custom indexes in the" |
|
" RagRetriever documentation as well as in `examples/rag/use_own_knowledge_dataset.py`" |
|
), |
|
) |
|
return parser |
|
|
|
@staticmethod |
|
def add_ray_specific_args(parser): |
|
|
|
parser.add_argument( |
|
"--ray-address", |
|
default="auto", |
|
type=str, |
|
help=( |
|
"The address of the Ray cluster to connect to. If not " |
|
"specified, Ray will attempt to automatically detect the " |
|
"cluster. Has no effect if pytorch is used as the distributed " |
|
"retriever." |
|
), |
|
) |
|
parser.add_argument( |
|
"--num_retrieval_workers", |
|
type=int, |
|
default=1, |
|
help=( |
|
"The number of retrieval actors to use when Ray is selected" |
|
"for the distributed retriever. Has no effect when " |
|
"distributed_retriever is set to pytorch." |
|
), |
|
) |
|
return parser |
|
|
|
|
|
def main(args=None, model=None) -> GenerativeQAModule: |
|
parser = argparse.ArgumentParser() |
|
parser = pl.Trainer.add_argparse_args(parser) |
|
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) |
|
parser = GenerativeQAModule.add_retriever_specific_args(parser) |
|
|
|
args = args or parser.parse_args() |
|
|
|
Path(args.output_dir).mkdir(exist_ok=True) |
|
|
|
named_actors = [] |
|
if args.distributed_retriever == "ray" and args.gpus > 1: |
|
if not is_ray_available(): |
|
raise RuntimeError("Please install Ray to use the Ray distributed retriever.") |
|
|
|
try: |
|
ray.init(address=args.ray_address, namespace="rag") |
|
except (ConnectionError, ValueError): |
|
logger.warning( |
|
"Connection to Ray cluster failed. Make sure a Ray" |
|
"cluster is running by either using Ray's cluster " |
|
"launcher (`ray up`) or by manually starting Ray on " |
|
"each node via `ray start --head` for the head node " |
|
"and `ray start --address='<ip address>:6379'` for " |
|
"additional nodes. See " |
|
"https://docs.ray.io/en/master/cluster/index.html " |
|
"for more info." |
|
) |
|
raise |
|
|
|
|
|
if ("LOCAL_RANK" not in os.environ or int(os.environ["LOCAL_RANK"]) == 0) and ( |
|
"NODE_RANK" not in os.environ or int(os.environ["NODE_RANK"]) == 0 |
|
): |
|
remote_cls = ray.remote(RayRetriever) |
|
named_actors = [ |
|
remote_cls.options(name="retrieval_worker_{}".format(i)).remote() |
|
for i in range(args.num_retrieval_workers) |
|
] |
|
else: |
|
logger.info( |
|
"Getting named actors for NODE_RANK {}, LOCAL_RANK {}".format( |
|
os.environ["NODE_RANK"], os.environ["LOCAL_RANK"] |
|
) |
|
) |
|
named_actors = [ray.get_actor("retrieval_worker_{}".format(i)) for i in range(args.num_retrieval_workers)] |
|
args.actor_handles = named_actors |
|
assert args.actor_handles == named_actors |
|
|
|
if model is None: |
|
model: GenerativeQAModule = GenerativeQAModule(args) |
|
|
|
dataset = Path(args.data_dir).name |
|
if ( |
|
args.logger_name == "default" |
|
or args.fast_dev_run |
|
or str(args.output_dir).startswith("/tmp") |
|
or str(args.output_dir).startswith("/var") |
|
): |
|
training_logger = True |
|
elif args.logger_name == "wandb": |
|
from pytorch_lightning.loggers import WandbLogger |
|
|
|
project = os.environ.get("WANDB_PROJECT", dataset) |
|
training_logger = WandbLogger(name=model.output_dir.name, project=project) |
|
|
|
elif args.logger_name == "wandb_shared": |
|
from pytorch_lightning.loggers import WandbLogger |
|
|
|
training_logger = WandbLogger(name=model.output_dir.name, project=f"hf_{dataset}") |
|
|
|
es_callback = ( |
|
get_early_stopping_callback(model.val_metric, args.early_stopping_patience) |
|
if args.early_stopping_patience >= 0 |
|
else False |
|
) |
|
|
|
trainer: pl.Trainer = generic_train( |
|
model, |
|
args, |
|
logging_callback=Seq2SeqLoggingCallback(), |
|
checkpoint_callback=get_checkpoint_callback(args.output_dir, model.val_metric), |
|
early_stopping_callback=es_callback, |
|
logger=training_logger, |
|
custom_ddp_plugin=CustomDDP() if args.gpus > 1 else None, |
|
profiler=pl.profiler.AdvancedProfiler() if args.profile else None, |
|
) |
|
pickle_save(model.hparams, model.output_dir / "hparams.pkl") |
|
|
|
if not args.do_predict: |
|
return model |
|
|
|
|
|
trainer.test() |
|
return model |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser = pl.Trainer.add_argparse_args(parser) |
|
parser = GenerativeQAModule.add_model_specific_args(parser, os.getcwd()) |
|
parser = GenerativeQAModule.add_retriever_specific_args(parser) |
|
parser = GenerativeQAModule.add_ray_specific_args(parser) |
|
|
|
|
|
parser.add_argument( |
|
"--profile", |
|
action="store_true", |
|
help="If True, use pytorch_lightning.profiler.AdvancedProfiler to profile the Trainer.", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main(args) |
|
|