File size: 5,900 Bytes
1e6d67a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
<!---
Copyright 2021 NVIDIA Corporation. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Huggingface QDQBERT Quantization Example
The QDQBERT model adds fake quantization (pair of QuantizeLinear/DequantizeLinear ops) to:
* linear layer inputs and weights
* matmul inputs
* residual add inputs
In this example, we use QDQBERT model to do quantization on SQuAD task, including Quantization Aware Training (QAT), Post Training Quantization (PTQ) and inferencing using TensorRT.
Required:
- [pytorch-quantization toolkit](https://github.com/NVIDIA/TensorRT/tree/master/tools/pytorch-quantization)
- [TensorRT >= 8.2](https://developer.nvidia.com/tensorrt)
- PyTorch >= 1.10.0
## Setup the environment with Dockerfile
Under the directory of `transformers/`, build the docker image:
```
docker build . -f examples/research_projects/quantization-qdqbert/Dockerfile -t bert_quantization:latest
```
Run the docker:
```
docker run --gpus all --privileged --rm -it --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 bert_quantization:latest
```
In the container:
```
cd transformers/examples/research_projects/quantization-qdqbert/
```
## Quantization Aware Training (QAT)
Calibrate the pretrained model and finetune with quantization awared:
```
python3 run_quant_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir calib/bert-base-uncased \
--do_calib \
--calibrator percentile \
--percentile 99.99
```
```
python3 run_quant_qa.py \
--model_name_or_path calib/bert-base-uncased \
--dataset_name squad \
--do_train \
--do_eval \
--per_device_train_batch_size 12 \
--learning_rate 4e-5 \
--num_train_epochs 2 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir finetuned_int8/bert-base-uncased \
--tokenizer_name bert-base-uncased \
--save_steps 0
```
### Export QAT model to ONNX
To export the QAT model finetuned above:
```
python3 run_quant_qa.py \
--model_name_or_path finetuned_int8/bert-base-uncased \
--output_dir ./ \
--save_onnx \
--per_device_eval_batch_size 1 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased
```
Use `--recalibrate-weights` to calibrate the weight ranges according to the quantizer axis. Use `--quant-per-tensor` for per tensor quantization (default is per channel).
Recalibrating will affect the accuracy of the model, but the change should be minimal (< 0.5 F1).
### Benchmark the INT8 QAT ONNX model inference with TensorRT using dummy input
```
trtexec --onnx=model.onnx --explicitBatch --workspace=16384 --int8 --shapes=input_ids:64x128,attention_mask:64x128,token_type_ids:64x128 --verbose
```
### Benchmark the INT8 QAT ONNX model inference with [ONNX Runtime-TRT](https://onnxruntime.ai/docs/execution-providers/TensorRT-ExecutionProvider.html) using dummy input
```
python3 ort-infer-benchmark.py
```
### Evaluate the INT8 QAT ONNX model inference with TensorRT
```
python3 evaluate-hf-trt-qa.py \
--onnx_model_path=./model.onnx \
--output_dir ./ \
--per_device_eval_batch_size 64 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased \
--int8 \
--seed 42
```
## Fine-tuning of FP32 model for comparison
Finetune a fp32 precision model with [transformers/examples/pytorch/question-answering/](../../pytorch/question-answering/):
```
python3 ../../pytorch/question-answering/run_qa.py \
--model_name_or_path bert-base-uncased \
--dataset_name squad \
--per_device_train_batch_size 12 \
--learning_rate 3e-5 \
--num_train_epochs 2 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir ./finetuned_fp32/bert-base-uncased \
--save_steps 0 \
--do_train \
--do_eval
```
## Post Training Quantization (PTQ)
### PTQ by calibrating and evaluating the finetuned FP32 model above:
```
python3 run_quant_qa.py \
--model_name_or_path ./finetuned_fp32/bert-base-uncased \
--dataset_name squad \
--calibrator percentile \
--percentile 99.99 \
--max_seq_length 128 \
--doc_stride 32 \
--output_dir ./calib/bert-base-uncased \
--save_steps 0 \
--do_calib \
--do_eval
```
### Export the INT8 PTQ model to ONNX
```
python3 run_quant_qa.py \
--model_name_or_path ./calib/bert-base-uncased \
--output_dir ./ \
--save_onnx \
--per_device_eval_batch_size 1 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased
```
### Evaluate the INT8 PTQ ONNX model inference with TensorRT
```
python3 evaluate-hf-trt-qa.py \
--onnx_model_path=./model.onnx \
--output_dir ./ \
--per_device_eval_batch_size 64 \
--max_seq_length 128 \
--doc_stride 32 \
--dataset_name squad \
--tokenizer_name bert-base-uncased \
--int8 \
--seed 42
```
### Quantization options
Some useful options to support different implementations and optimizations. These should be specified for both calibration and finetuning.
|argument|description|
|--------|-----------|
|`--quant-per-tensor`| quantize weights with one quantization range per tensor |
|`--fuse-qkv` | use a single range (the max) for quantizing QKV weights and output activations |
|`--clip-gelu N` | clip the output of GELU to a maximum of N when quantizing (e.g. 10) |
|`--disable-dropout` | disable dropout for consistent activation ranges |
|