Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,213 +1,209 @@
|
|
1 |
import gradio as gr
|
2 |
-
import random
|
3 |
-
import json
|
4 |
-
import fastapi
|
5 |
-
from fastapi import FastAPI, Request
|
6 |
-
import os
|
7 |
import argilla as rg
|
8 |
-
|
|
|
9 |
import time
|
10 |
-
import
|
11 |
-
from fastapi
|
12 |
-
from
|
13 |
-
from fastapi.middleware.gzip import GZipMiddleware
|
14 |
|
|
|
15 |
client = rg.Argilla(
|
16 |
api_url=os.getenv("ARGILLA_API_URL", ""),
|
17 |
api_key=os.getenv("ARGILLA_API_KEY", "")
|
18 |
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
"
|
23 |
-
|
24 |
-
|
25 |
-
"Bolivia": {
|
26 |
-
"iso": "BOL",
|
27 |
-
"emoji": "🇧🇴"
|
28 |
-
},
|
29 |
-
"Chile": {
|
30 |
-
"iso": "CHL",
|
31 |
-
"emoji": "🇨🇱"
|
32 |
-
},
|
33 |
-
"Colombia": {
|
34 |
-
"iso": "COL",
|
35 |
-
"emoji": "🇨🇴"
|
36 |
-
},
|
37 |
-
"Costa Rica": {
|
38 |
-
"iso": "CRI",
|
39 |
-
"emoji": "🇨🇷"
|
40 |
-
},
|
41 |
-
"Cuba": {
|
42 |
-
"iso": "CUB",
|
43 |
-
"emoji": "🇨🇺"
|
44 |
-
},
|
45 |
-
"Ecuador": {
|
46 |
-
"iso": "ECU",
|
47 |
-
"emoji": "🇪🇨"
|
48 |
-
},
|
49 |
-
"El Salvador": {
|
50 |
-
"iso": "SLV",
|
51 |
-
"emoji": "🇸🇻"
|
52 |
-
},
|
53 |
-
"España": {
|
54 |
-
"iso": "ESP",
|
55 |
-
"emoji": "🇪🇸"
|
56 |
-
},
|
57 |
-
"Guatemala": {
|
58 |
-
"iso": "GTM",
|
59 |
-
"emoji": "🇬🇹"
|
60 |
-
},
|
61 |
-
"Honduras": {
|
62 |
-
"iso": "HND",
|
63 |
-
"emoji": "🇭🇳"
|
64 |
-
},
|
65 |
-
"México": {
|
66 |
-
"iso": "MEX",
|
67 |
-
"emoji": "🇲🇽"
|
68 |
-
},
|
69 |
-
"Nicaragua": {
|
70 |
-
"iso": "NIC",
|
71 |
-
"emoji": "🇳🇮"
|
72 |
-
},
|
73 |
-
"Panamá": {
|
74 |
-
"iso": "PAN",
|
75 |
-
"emoji": "🇵🇦"
|
76 |
-
},
|
77 |
-
"Paraguay": {
|
78 |
-
"iso": "PRY",
|
79 |
-
"emoji": "🇵🇾"
|
80 |
-
},
|
81 |
-
"Perú": {
|
82 |
-
"iso": "PER",
|
83 |
-
"emoji": "🇵🇪"
|
84 |
-
},
|
85 |
-
"Puerto Rico": {
|
86 |
-
"iso": "PRI",
|
87 |
-
"emoji": "🇵🇷"
|
88 |
-
},
|
89 |
-
"República Dominicana": {
|
90 |
-
"iso": "DOM",
|
91 |
-
"emoji": "🇩🇴"
|
92 |
-
},
|
93 |
-
"Uruguay": {
|
94 |
-
"iso": "URY",
|
95 |
-
"emoji": "🇺🇾"
|
96 |
-
},
|
97 |
-
"Venezuela": {
|
98 |
-
"iso": "VEN",
|
99 |
-
"emoji": "🇻🇪"
|
100 |
-
}
|
101 |
-
}
|
102 |
-
|
103 |
|
|
|
104 |
@lru_cache(maxsize=32)
|
105 |
-
def
|
106 |
-
return
|
107 |
|
108 |
-
def
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
dataset_name = f"{emoji} {country} - {iso} - Responder"
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
"
|
142 |
-
"
|
143 |
-
"answered_questions": completed_questions,
|
144 |
-
"total_answers": total_answers,
|
145 |
-
"percent": round(percentage_complete, 2),
|
146 |
-
"documents": total_questions
|
147 |
-
}
|
148 |
-
|
149 |
-
except Exception as e:
|
150 |
-
print(f"No dataset found for {dataset_name}: {e}")
|
151 |
-
return {
|
152 |
-
"name": country,
|
153 |
-
"total_questions": 0,
|
154 |
-
"answered_questions": 0,
|
155 |
-
"total_answers": 0,
|
156 |
-
"percent": 0,
|
157 |
-
"documents": 0
|
158 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
|
|
160 |
app = FastAPI()
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
last_update_time = time.time()
|
166 |
-
cached_html_content = None
|
167 |
|
168 |
-
|
169 |
-
|
170 |
-
global
|
171 |
current_time = time.time()
|
172 |
|
173 |
-
#
|
174 |
-
if
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
country_data[countries[country]["iso"]] = count_answers_per_space_cached(country, cache_buster)
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
def
|
196 |
-
|
197 |
-
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
|
|
|
|
201 |
|
202 |
-
|
|
|
203 |
|
204 |
-
|
205 |
-
|
|
|
206 |
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
|
|
209 |
gr.mount_gradio_app(app, demo, path="/")
|
210 |
|
|
|
211 |
if __name__ == "__main__":
|
212 |
import uvicorn
|
213 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
import argilla as rg
|
3 |
+
import pandas as pd
|
4 |
+
import os
|
5 |
import time
|
6 |
+
from collections import defaultdict
|
7 |
+
from fastapi import FastAPI
|
8 |
+
from functools import lru_cache
|
|
|
9 |
|
10 |
+
# Initialize Argilla client with environment variables
|
11 |
client = rg.Argilla(
|
12 |
api_url=os.getenv("ARGILLA_API_URL", ""),
|
13 |
api_key=os.getenv("ARGILLA_API_KEY", "")
|
14 |
)
|
15 |
|
16 |
+
# Dataset information - list all the datasets to track
|
17 |
+
DATASETS = [
|
18 |
+
"🇪🇸 España - ESP - Responder",
|
19 |
+
# Add more datasets as needed
|
20 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# Cache results to avoid frequent API calls
|
23 |
@lru_cache(maxsize=32)
|
24 |
+
def get_user_contributions_cached(cache_buster: int):
|
25 |
+
return get_user_contributions()
|
26 |
|
27 |
+
def get_user_contributions():
|
28 |
+
"""Get contributions per user across all datasets"""
|
29 |
+
user_contributions = defaultdict(lambda: {"username": "", "contributions": 0, "datasets": {}})
|
30 |
+
user_id_to_username = {}
|
|
|
31 |
|
32 |
+
# Process each dataset
|
33 |
+
for dataset_name in DATASETS:
|
34 |
+
try:
|
35 |
+
print(f"Processing dataset: {dataset_name}")
|
36 |
+
dataset = client.datasets(dataset_name)
|
37 |
+
records = list(dataset.records(with_responses=True))
|
38 |
+
|
39 |
+
# Track contributions per user in this dataset
|
40 |
+
dataset_contributions = defaultdict(int)
|
41 |
+
|
42 |
+
for record in records:
|
43 |
+
record_dict = record.to_dict()
|
44 |
+
if "answer_1" in record_dict["responses"]:
|
45 |
+
for answer in record_dict["responses"]["answer_1"]:
|
46 |
+
if answer["user_id"]:
|
47 |
+
user_id = answer["user_id"]
|
48 |
+
dataset_contributions[user_id] += 1
|
49 |
+
|
50 |
+
# Get username if not already cached
|
51 |
+
if user_id not in user_id_to_username:
|
52 |
+
try:
|
53 |
+
user = client.users(id=user_id)
|
54 |
+
user_id_to_username[user_id] = user.username
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error getting username for {user_id}: {e}")
|
57 |
+
user_id_to_username[user_id] = f"User-{user_id[:8]}"
|
58 |
+
|
59 |
+
# Add dataset contributions to overall user stats
|
60 |
+
for user_id, count in dataset_contributions.items():
|
61 |
+
username = user_id_to_username.get(user_id, f"User-{user_id[:8]}")
|
62 |
+
user_contributions[user_id]["username"] = username
|
63 |
+
user_contributions[user_id]["contributions"] += count
|
64 |
+
user_contributions[user_id]["datasets"][dataset_name] = count
|
65 |
|
66 |
+
except Exception as e:
|
67 |
+
print(f"Error processing dataset {dataset_name}: {e}")
|
68 |
+
|
69 |
+
# Convert to dataframe for easier handling
|
70 |
+
rows = []
|
71 |
+
for user_id, data in user_contributions.items():
|
72 |
+
row = {
|
73 |
+
"Username": data["username"],
|
74 |
+
"Total Contributions": data["contributions"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
}
|
76 |
+
# Add individual dataset contributions
|
77 |
+
for dataset_name in DATASETS:
|
78 |
+
row[dataset_name] = data["datasets"].get(dataset_name, 0)
|
79 |
+
rows.append(row)
|
80 |
+
|
81 |
+
df = pd.DataFrame(rows)
|
82 |
+
|
83 |
+
# Sort by total contributions (descending)
|
84 |
+
if not df.empty:
|
85 |
+
df = df.sort_values("Total Contributions", ascending=False)
|
86 |
+
|
87 |
+
return df
|
88 |
|
89 |
+
# App setup
|
90 |
app = FastAPI()
|
91 |
|
92 |
+
last_update_time = 0
|
93 |
+
cached_data = None
|
|
|
|
|
|
|
94 |
|
95 |
+
def create_leaderboard_ui():
|
96 |
+
"""Create the leaderboard UI"""
|
97 |
+
global cached_data, last_update_time
|
98 |
current_time = time.time()
|
99 |
|
100 |
+
# Use cached data if available and not expired (5 minute cache)
|
101 |
+
if cached_data is not None and current_time - last_update_time < 300:
|
102 |
+
df = cached_data
|
103 |
+
else:
|
104 |
+
# Fetch fresh data
|
105 |
+
cache_buster = int(current_time)
|
106 |
+
df = get_user_contributions_cached(cache_buster)
|
107 |
+
cached_data = df
|
108 |
+
last_update_time = current_time
|
109 |
|
110 |
+
# Add rank column
|
111 |
+
if not df.empty:
|
112 |
+
df = df.reset_index(drop=True)
|
113 |
+
df.index = df.index + 1
|
114 |
+
df = df.rename_axis("Rank")
|
115 |
+
df = df.reset_index()
|
116 |
|
117 |
+
# Format for better display
|
118 |
+
df_html = df.to_html(classes="leaderboard-table", border=0, index=False)
|
|
|
119 |
|
120 |
+
# Add some styling
|
121 |
+
styled_html = f"""
|
122 |
+
<div style="margin: 20px 0;">
|
123 |
+
<h2>🏆 Leaderboard of User Contributions</h2>
|
124 |
+
<p>Last updated: {time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(last_update_time))}</p>
|
125 |
+
<style>
|
126 |
+
.leaderboard-table {{
|
127 |
+
width: 100%;
|
128 |
+
border-collapse: collapse;
|
129 |
+
font-family: Arial, sans-serif;
|
130 |
+
}}
|
131 |
+
.leaderboard-table th {{
|
132 |
+
background-color: #f2f2f2;
|
133 |
+
color: #333;
|
134 |
+
font-weight: bold;
|
135 |
+
text-align: left;
|
136 |
+
padding: 12px;
|
137 |
+
border-bottom: 2px solid #ddd;
|
138 |
+
}}
|
139 |
+
.leaderboard-table td {{
|
140 |
+
padding: 10px 12px;
|
141 |
+
border-bottom: 1px solid #ddd;
|
142 |
+
}}
|
143 |
+
.leaderboard-table tr:nth-child(even) {{
|
144 |
+
background-color: #f9f9f9;
|
145 |
+
}}
|
146 |
+
.leaderboard-table tr:hover {{
|
147 |
+
background-color: #f1f1f1;
|
148 |
+
}}
|
149 |
+
.leaderboard-table tr:nth-child(1) td:first-child,
|
150 |
+
.leaderboard-table tr:nth-child(1) td:nth-child(2) {{
|
151 |
+
font-weight: bold;
|
152 |
+
color: gold;
|
153 |
+
}}
|
154 |
+
.leaderboard-table tr:nth-child(2) td:first-child,
|
155 |
+
.leaderboard-table tr:nth-child(2) td:nth-child(2) {{
|
156 |
+
font-weight: bold;
|
157 |
+
color: silver;
|
158 |
+
}}
|
159 |
+
.leaderboard-table tr:nth-child(3) td:first-child,
|
160 |
+
.leaderboard-table tr:nth-child(3) td:nth-child(2) {{
|
161 |
+
font-weight: bold;
|
162 |
+
color: #cd7f32; /* bronze */
|
163 |
+
}}
|
164 |
+
</style>
|
165 |
+
{df_html}
|
166 |
+
<p><small>Note: This leaderboard shows user contributions across all tracked datasets.</small></p>
|
167 |
+
</div>
|
168 |
+
"""
|
169 |
+
return styled_html
|
170 |
|
171 |
+
def refresh_data():
|
172 |
+
"""Force refresh of the data"""
|
173 |
+
global cached_data, last_update_time
|
174 |
+
cached_data = None
|
175 |
+
last_update_time = 0
|
176 |
+
return create_leaderboard_ui()
|
177 |
|
178 |
+
# Create Gradio interface
|
179 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="indigo")) as demo:
|
180 |
+
gr.Markdown("# Contribution Leaderboard")
|
181 |
+
gr.Markdown("Track user contributions across datasets in real-time")
|
182 |
|
183 |
+
# Create leaderboard display
|
184 |
+
leaderboard_html = gr.HTML(create_leaderboard_ui)
|
185 |
|
186 |
+
# Add refresh button
|
187 |
+
refresh_btn = gr.Button("🔄 Refresh Data")
|
188 |
+
refresh_btn.click(fn=refresh_data, outputs=leaderboard_html)
|
189 |
|
190 |
+
# Additional information
|
191 |
+
with gr.Accordion("About this leaderboard", open=False):
|
192 |
+
gr.Markdown("""
|
193 |
+
This leaderboard tracks user contributions across multiple datasets.
|
194 |
+
|
195 |
+
### How it works
|
196 |
+
- **Contributions**: Each response provided by a user counts as one contribution
|
197 |
+
- **Refresh**: Data is automatically cached for 5 minutes. Click the refresh button to update manually
|
198 |
+
- **Datasets tracked**:
|
199 |
+
- 🇪🇸 España - ESP - Responder
|
200 |
+
- [Add more datasets as needed]
|
201 |
+
""")
|
202 |
|
203 |
+
# Mount the Gradio app
|
204 |
gr.mount_gradio_app(app, demo, path="/")
|
205 |
|
206 |
+
# Run the app
|
207 |
if __name__ == "__main__":
|
208 |
import uvicorn
|
209 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|