Spaces:
Sleeping
Sleeping
let's deploy to huggingface spaces
Browse files- app.py +25 -4
- export.pkl +3 -0
- requirements.txt +2 -0
- siamese.jpg +0 -0
app.py
CHANGED
@@ -1,7 +1,28 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from fastai.vision.all import *
|
3 |
+
import skimage
|
4 |
|
5 |
+
learn = load_learner('export.pkl')
|
|
|
6 |
|
7 |
+
labels = learn.dls.vocab
|
8 |
+
def predict(img):
|
9 |
+
img = PILImage.create(img)
|
10 |
+
pred,pred_idx,probs = learn.predict(img)
|
11 |
+
return {labels[i]: float(probs[i]) for i in range(len(labels))}
|
12 |
+
|
13 |
+
title = "Dog Cat Classifier"
|
14 |
+
description = "A dog cat classifier. Created as a demo for Gradio and HuggingFace Spaces."
|
15 |
+
article=""
|
16 |
+
examples = ['siamese.jpg']
|
17 |
+
interpretation='default'
|
18 |
+
enable_queue=True
|
19 |
+
|
20 |
+
gr.Interface(fn=predict,
|
21 |
+
inputs=gr.inputs.Image(shape=(512, 512)),
|
22 |
+
outputs=gr.outputs.Label(num_top_classes=3),
|
23 |
+
title=title,
|
24 |
+
description=description,
|
25 |
+
article=article,
|
26 |
+
examples=examples,
|
27 |
+
interpretation=interpretation,
|
28 |
+
enable_queue=enable_queue).launch()
|
export.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04c637a459dcd50e3c490ab22ea340bc9af78e66c0139c862d5673a098e13729
|
3 |
+
size 87555051
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
fastai
|
2 |
+
scikit-image
|
siamese.jpg
ADDED
![]() |