Spaces:
Runtime error
Runtime error
import os | |
from huggingface_hub import hf_hub_download | |
import cv2 | |
import paddlehub as hub | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageOps | |
import numpy as np | |
import imageio | |
from moviepy.editor import * | |
os.makedirs("models", exist_ok=True) | |
model_path = hf_hub_download( | |
repo_id="akhaliq/lama", | |
filename="best.ckpt", | |
local_dir="models" # This will download it directly into 'models' directory | |
) | |
print(f"Model downloaded to: {model_path}") | |
def get_frames(video_in): | |
frames = [] | |
clip = VideoFileClip(video_in) | |
# Resize and adjust FPS | |
if clip.fps > 30: | |
print("Video rate is over 30, resetting to 30") | |
clip_resized = clip.resize(height=256) | |
clip_resized.write_videofile("video_resized.mp4", fps=30) | |
else: | |
print("Video rate is OK") | |
clip_resized = clip.resize(height=256) | |
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps) | |
# Extract frames | |
cap = cv2.VideoCapture("video_resized.mp4") | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
print("Video fps:", fps) | |
i = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_path = f'kang_{i}.jpg' | |
cv2.imwrite(frame_path, frame) | |
frames.append(frame_path) | |
i += 1 | |
cap.release() | |
cv2.destroyAllWindows() | |
print("Video broken into frames") | |
return frames, fps | |
def create_video(frames, fps, type_name): | |
print("Building video result") | |
clip = ImageSequenceClip(frames, fps=fps) | |
output_file = f"{type_name}_result.mp4" | |
clip.write_videofile(output_file, fps=fps) | |
return output_file | |
def magic_lama(img_path): | |
img = Image.open(img_path) | |
mask = Image.open("./masks/modelscope-mask.png") | |
inverted_mask = ImageOps.invert(mask) | |
imageio.imwrite("./data/data.png", img) | |
imageio.imwrite("./data/data_mask.png", inverted_mask) | |
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu') | |
return "./dataout/data_mask.png" | |
def infer(video_in): | |
frames_list, fps = get_frames(video_in) | |
n_frame = len(frames_list) | |
result_frames = [] | |
for i, frame_path in enumerate(frames_list[:n_frame]): | |
lama_frame = magic_lama(frame_path) | |
cleaned_frame_path = f"cleaned_frame_{i}.jpg" | |
Image.open(lama_frame).save(cleaned_frame_path) | |
result_frames.append(cleaned_frame_path) | |
print(f"Processed frame {i + 1}/{n_frame}") | |
final_video = create_video(result_frames, fps, "cleaned") | |
return final_video | |
# Gradio Interface | |
inputs = gr.Video(label="Input", source="upload", type="filepath") | |
outputs = gr.Video(label="Output") | |
title = "LaMa Video Watermark Remover" | |
description = ( | |
"<p style='text-align: center'>LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions.<br />" | |
"This demo is meant to be used as a watermark remover on Modelscope generated videos.<br />" | |
"Simply upload your Modelscope video and hit Submit.</p>" | |
) | |
article = ( | |
"<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | " | |
"<a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>" | |
) | |
examples = [ | |
"./examples/modelscope-astronaut-horse.mp4", | |
"./examples/modelscope-panda.mp4", | |
"./examples/modelscope-spiderman-surfing.mp4" | |
] | |
demo = gr.Interface( | |
fn=infer, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples | |
) | |
# Launch with prevent_thread_lock in case it's needed for async compatibility in v4 | |
demo.launch(prevent_thread_lock=True) |