File size: 4,068 Bytes
11bd448
aae10fc
25bf2cc
11bd448
 
aae10fc
25bf2cc
 
 
11bd448
 
25bf2cc
b4f5e30
aae10fc
 
 
 
 
 
 
 
 
 
11bd448
 
aae10fc
11bd448
 
aae10fc
 
 
 
 
 
 
 
 
25bf2cc
 
aae10fc
 
 
 
 
 
 
 
490bc75
 
 
 
 
 
 
 
25bf2cc
490bc75
 
 
25bf2cc
 
aae10fc
490bc75
 
 
 
 
 
 
25bf2cc
 
490bc75
 
aae10fc
490bc75
 
 
 
 
 
 
 
aae10fc
490bc75
aae10fc
 
25bf2cc
490bc75
 
 
 
 
 
 
 
 
 
 
aae10fc
 
490bc75
aae10fc
490bc75
25bf2cc
11bd448
490bc75
 
 
 
25bf2cc
11bd448
25bf2cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import gradio as gr
from huggingface_hub import ModelCard

from compliance_checks import (
    ComplianceSuite,
    ComplianceCheck,
    IntendedPurposeCheck,
    GeneralLimitationsCheck,
    ComputationalRequirementsCheck,
)

from bloom_card import bloom_card

checks = [
    IntendedPurposeCheck(),
    GeneralLimitationsCheck(),
    ComputationalRequirementsCheck(),
]
suite = ComplianceSuite(checks=checks)


def status_emoji(status: bool):
    return "✅" if status else "🛑"


def run_compliance_check(model_card: str):
    results = suite.run(model_card)

    return [
        *[gr.Accordion.update(label=f"{r.name} - {status_emoji(r.status)}") for r in results],
        *[gr.Markdown.update(value=r.to_string()) for r in results],
    ]


def fetch_and_run_compliance_check(model_id: str):
    model_card = ModelCard.load(repo_id_or_path=model_id).content
    return run_compliance_check(model_card=model_card)


def compliance_result(compliance_check: ComplianceCheck):
    accordion = gr.Accordion(label=f"{compliance_check.name}", open=False)
    with accordion:
        description = gr.Markdown("Run an evaluation to see results...")

    return accordion, description


def read_file(file_obj):
    with open(file_obj.name) as f:
        return f.read()


model_card_box = gr.TextArea(label="Model Card")

with gr.Blocks(css="#reverse-row { flex-direction: row-reverse;} #file-upload .boundedheight {max-height: 100px;}") as demo:
    gr.Markdown("""\
    # RegCheck AI
    This Space uses model cards’ information as a source of regulatory compliance with some provisions of the proposed [EU AI Act](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206). For the moment being, the demo is a **prototype** limited to specific provisions of Article 13 of the AI Act, related to “Transparency and provision of information to users”. Choose a model card and check whether it has some useful info to comply with the EU AI Act! **(DISCLAIMER: this is NOT a commercial or legal advice-related product)**

    """)

    with gr.Row(elem_id="reverse-row"):
        with gr.Column():
            submit_markdown = gr.Button(value="Run validation checks")
            with gr.Tab(label="Results"):
                with gr.Column():
                    compliance_results = [compliance_result(c) for c in suite.checks]
                    compliance_accordions = [c[0] for c in compliance_results]
                    compliance_descriptions = [c[1] for c in compliance_results]

        with gr.Column():
            with gr.Tab(label="Load a card from the 🤗 Hugging Face Hub"):
                model_id_search = gr.Text(label="Model ID")
                gr.Examples(
                    examples=[
                        "society-ethics/model-card-webhook-test",
                        "bigscience/bloom",
                        "roberta-base",
                        "openai/clip-vit-base-patch32",
                        "distilbert-base-cased-distilled-squad",
                    ],
                    fn=lambda x: ModelCard.load(repo_id_or_path=x).content,
                    inputs=[model_id_search],
                    outputs=[model_card_box]
                    # cache_examples=True,  # TODO: Why does this break the app?
                )

                submit_model_search = gr.Button(value="Load model card")

            with gr.Tab(label="Upload your own card"):
                file = gr.UploadButton(label="Upload a Markdown file", elem_id="file-upload")
                file.upload(
                    fn=read_file,
                    inputs=[file],
                    outputs=[model_card_box]
                )

            model_card_box.render()

    submit_model_search.click(
        fn=lambda x: ModelCard.load(repo_id_or_path=x).content,
        inputs=[model_id_search],
        outputs=[model_card_box]
    )

    submit_markdown.click(
        fn=run_compliance_check,
        inputs=[model_card_box],
        outputs=[*compliance_accordions, *compliance_descriptions]
    )

demo.launch()