sashavor commited on
Commit
1833b56
·
1 Parent(s): ece8ba5

adding stuff

Browse files
app.py CHANGED
@@ -2,9 +2,11 @@ import gradio as gr
2
  from PIL import Image
3
  import os
4
 
5
- def get_identity_images(path="images/identities"):
6
- ims = Image.open([os.path.join(path,im) for im in os.listdir(path)])
7
- return ims
 
 
8
 
9
  with gr.Blocks() as demo:
10
  gr.Markdown("""
@@ -13,6 +15,9 @@ with gr.Blocks() as demo:
13
  gr.HTML('''
14
  <p style="margin-bottom: 10px; font-size: 94%">This is the demo page for the "Stable Bias" paper, which aims to explore and quantify social biases in text-to-image systems. <br> This work was done by <a href='https://huggingface.co/sasha' style='text-decoration: underline;' target='_blank'> Alexandra Sasha Luccioni (Hugging Face) </a>, <a href='https://huggingface.co/cakiki' style='text-decoration: underline;' target='_blank'> Christopher Akiki (ScaDS.AI, Leipzig University)</a>, <a href='https://huggingface.co/meg' style='text-decoration: underline;' target='_blank'> Margaret Mitchell (Hugging Face) </a> and <a href='https://huggingface.co/yjernite' style='text-decoration: underline;' target='_blank'> Yacine Jernite (Hugging Face) </a> .</p>
15
  ''')
 
 
 
16
 
17
  gr.HTML('''
18
  <p style="margin-bottom: 14px; font-size: 100%"> As AI-enabled Text-to-Image systems are becoming increasingly used, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. <br> We propose a new method for exploring and quantifying social biases in these kinds of systems by directly comparing collections of generated images designed to showcase a system’s variation across social attributes — gender and ethnicity — and target attributes for bias evaluation — professions and gender-coded adjectives. <br> We compare three models: Stable Diffusion v.1.4, Stable Diffusion v.2., and Dall-E 2, and present some of our key findings below:</p>
@@ -57,5 +62,46 @@ humans have no inherent gender or ethnicity nor do they belong to socially-const
57
  with gr.Row():
58
  gr.HTML('''
59
  <p style="margin-bottom: 14px; font-size: 100%"> TO DO: talk about what we see above. <br> Continue exploring the demo on your own to uncover other patterns! </p>''')
60
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  demo.launch(debug=True)
 
2
  from PIL import Image
3
  import os
4
 
5
+ def get_images(path):
6
+ images = [Image.open(os.path.join(path,im)) for im in os.listdir(path)]
7
+ paths = os.listdir(path)
8
+ return([(im, path) for im, path in zip(images,paths)])
9
+
10
 
11
  with gr.Blocks() as demo:
12
  gr.Markdown("""
 
15
  gr.HTML('''
16
  <p style="margin-bottom: 10px; font-size: 94%">This is the demo page for the "Stable Bias" paper, which aims to explore and quantify social biases in text-to-image systems. <br> This work was done by <a href='https://huggingface.co/sasha' style='text-decoration: underline;' target='_blank'> Alexandra Sasha Luccioni (Hugging Face) </a>, <a href='https://huggingface.co/cakiki' style='text-decoration: underline;' target='_blank'> Christopher Akiki (ScaDS.AI, Leipzig University)</a>, <a href='https://huggingface.co/meg' style='text-decoration: underline;' target='_blank'> Margaret Mitchell (Hugging Face) </a> and <a href='https://huggingface.co/yjernite' style='text-decoration: underline;' target='_blank'> Yacine Jernite (Hugging Face) </a> .</p>
17
  ''')
18
+ examples_path= "images/examples"
19
+ examples_gallery = gr.Gallery(get_images(examples_path),
20
+ label="Example images", show_label=False, elem_id="gallery").style(grid=[1,6], height="auto")
21
 
22
  gr.HTML('''
23
  <p style="margin-bottom: 14px; font-size: 100%"> As AI-enabled Text-to-Image systems are becoming increasingly used, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. <br> We propose a new method for exploring and quantifying social biases in these kinds of systems by directly comparing collections of generated images designed to showcase a system’s variation across social attributes — gender and ethnicity — and target attributes for bias evaluation — professions and gender-coded adjectives. <br> We compare three models: Stable Diffusion v.1.4, Stable Diffusion v.2., and Dall-E 2, and present some of our key findings below:</p>
 
62
  with gr.Row():
63
  gr.HTML('''
64
  <p style="margin-bottom: 14px; font-size: 100%"> TO DO: talk about what we see above. <br> Continue exploring the demo on your own to uncover other patterns! </p>''')
65
+
66
+ with gr.Accordion("Comparing model generations", open=False):
67
+ gr.HTML('''
68
+ <p style="margin-bottom: 14px; font-size: 100%"> One of the goals of our study was allowing users to compare model generations across professions in an open-ended way, uncovering patterns and trends on their own. This is why we created the <a href='https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer' style='text-decoration: underline;' target='_blank'> Diffusion Bias Explorer </a> and the <a href='https://huggingface.co/spaces/society-ethics/Average_diffusion_faces' style='text-decoration: underline;' target='_blank'> Average Diffusion Faces </a> tools. <br> We show some of their functionalities below: </p> ''')
69
+ with gr.Row():
70
+ with gr.Column():
71
+ impath = "images/biasexplorer"
72
+ biasexplorer_gallery = gr.Gallery([os.path.join(impath,im) for im in os.listdir(impath)],
73
+ label="Bias explorer images", show_label=False, elem_id="gallery").style(grid=2, height="auto")
74
+ with gr.Column():
75
+ gr.HTML('''
76
+ <p style="margin-bottom: 14px; font-size: 100%"> Comparing generations both between two models and within a single model can help uncover trends and patterns that are hard to measure using quantitative approaches. </p>''')
77
+ with gr.Row():
78
+ impath = "images/averagefaces"
79
+ average_gallery = gr.Gallery([os.path.join(impath,im) for im in os.listdir(impath)],
80
+ label="Average Face images", show_label=False, elem_id="gallery").style(grid=3, height="auto")
81
+ gr.HTML('''
82
+ <p style="margin-bottom: 14px; font-size: 100%"> Looking at the average faces for a given profession across multiple models can help see the dominant characteristics of that profession, as well as how much variation there is (based on how fuzzy the image is). </p>''')
83
+
84
+ with gr.Accordion("Exploring the color space of generated images", open=False):
85
+ gr.HTML('''
86
+ <p style="margin-bottom: 14px; font-size: 100%"> TODO Chris </p> ''')
87
+
88
+ with gr.Accordion("Exploring the nearest neighbors of generated images", open=False):
89
+ gr.HTML('''
90
+ <p style="margin-bottom: 14px; font-size: 100%"> TODO Chris </p> ''')
91
+
92
+ gr.Markdown("""
93
+ ### All of the tools created as part of this project:
94
+ """)
95
+ gr.HTML('''
96
+ <p style="margin-bottom: 10px; font-size: 94%">
97
+ <a href='https://huggingface.co/spaces/society-ethics/Average_diffusion_faces' style='text-decoration: underline;' target='_blank'> Average Diffusion Faces </a> <br>
98
+ <a href='https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer' style='text-decoration: underline;' target='_blank'> Diffusion Bias Explorer </a> <br>
99
+ <a href='https://huggingface.co/spaces/society-ethics/DiffusionClustering' style='text-decoration: underline;' target='_blank'> Diffusion Cluster Explorer </a>
100
+ <a href='https://huggingface.co/spaces/society-ethics/DiffusionFaceClustering' style='text-decoration: underline;' target='_blank'> Identity Representation Demo </a>
101
+ <a href='https://huggingface.co/spaces/tti-bias/identities-bovw-knn' style='text-decoration: underline;' target='_blank'> BoVW Nearest Neighbors Explorer </a> <br>
102
+ <a href='https://huggingface.co/spaces/tti-bias/professions-bovw-knn' style='text-decoration: underline;' target='_blank'> BoVW Professions Explorer </a> <br>
103
+ <a href='https://huggingface.co/spaces/tti-bias/identities-colorfulness-knn' style='text-decoration: underline;' target='_blank'> Colorfulness Profession Explorer </a> <br>
104
+ <a href='https://huggingface.co/spaces/tti-bias/professions-colorfulness-knn' style='text-decoration: underline;' target='_blank'> Colorfulness Identities Explorer </a> <br> </p>
105
+ ''')
106
+
107
  demo.launch(debug=True)
images/averagefaces/CEO.png ADDED
images/averagefaces/hairdresser.png ADDED
images/averagefaces/jailer.png ADDED
images/averagefaces/janitor.png ADDED
images/averagefaces/manicurist.png ADDED
images/averagefaces/postal_worker.png ADDED
images/examples/bus driver (SD v2).png ADDED
images/examples/carpenter (SD v1.4).png ADDED
images/examples/fitness instructor (SD v2).png ADDED
images/examples/pilot (Dall-E 2).png ADDED
images/examples/scientist (Dall-E 2).png ADDED
images/examples/security guard (SD v1.4).png ADDED