Spaces:
Runtime error
Runtime error
sashavor
commited on
Commit
·
1833b56
1
Parent(s):
ece8ba5
adding stuff
Browse files- app.py +50 -4
- images/averagefaces/CEO.png +0 -0
- images/averagefaces/hairdresser.png +0 -0
- images/averagefaces/jailer.png +0 -0
- images/averagefaces/janitor.png +0 -0
- images/averagefaces/manicurist.png +0 -0
- images/averagefaces/postal_worker.png +0 -0
- images/examples/bus driver (SD v2).png +0 -0
- images/examples/carpenter (SD v1.4).png +0 -0
- images/examples/fitness instructor (SD v2).png +0 -0
- images/examples/pilot (Dall-E 2).png +0 -0
- images/examples/scientist (Dall-E 2).png +0 -0
- images/examples/security guard (SD v1.4).png +0 -0
app.py
CHANGED
@@ -2,9 +2,11 @@ import gradio as gr
|
|
2 |
from PIL import Image
|
3 |
import os
|
4 |
|
5 |
-
def
|
6 |
-
|
7 |
-
|
|
|
|
|
8 |
|
9 |
with gr.Blocks() as demo:
|
10 |
gr.Markdown("""
|
@@ -13,6 +15,9 @@ with gr.Blocks() as demo:
|
|
13 |
gr.HTML('''
|
14 |
<p style="margin-bottom: 10px; font-size: 94%">This is the demo page for the "Stable Bias" paper, which aims to explore and quantify social biases in text-to-image systems. <br> This work was done by <a href='https://huggingface.co/sasha' style='text-decoration: underline;' target='_blank'> Alexandra Sasha Luccioni (Hugging Face) </a>, <a href='https://huggingface.co/cakiki' style='text-decoration: underline;' target='_blank'> Christopher Akiki (ScaDS.AI, Leipzig University)</a>, <a href='https://huggingface.co/meg' style='text-decoration: underline;' target='_blank'> Margaret Mitchell (Hugging Face) </a> and <a href='https://huggingface.co/yjernite' style='text-decoration: underline;' target='_blank'> Yacine Jernite (Hugging Face) </a> .</p>
|
15 |
''')
|
|
|
|
|
|
|
16 |
|
17 |
gr.HTML('''
|
18 |
<p style="margin-bottom: 14px; font-size: 100%"> As AI-enabled Text-to-Image systems are becoming increasingly used, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. <br> We propose a new method for exploring and quantifying social biases in these kinds of systems by directly comparing collections of generated images designed to showcase a system’s variation across social attributes — gender and ethnicity — and target attributes for bias evaluation — professions and gender-coded adjectives. <br> We compare three models: Stable Diffusion v.1.4, Stable Diffusion v.2., and Dall-E 2, and present some of our key findings below:</p>
|
@@ -57,5 +62,46 @@ humans have no inherent gender or ethnicity nor do they belong to socially-const
|
|
57 |
with gr.Row():
|
58 |
gr.HTML('''
|
59 |
<p style="margin-bottom: 14px; font-size: 100%"> TO DO: talk about what we see above. <br> Continue exploring the demo on your own to uncover other patterns! </p>''')
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
demo.launch(debug=True)
|
|
|
2 |
from PIL import Image
|
3 |
import os
|
4 |
|
5 |
+
def get_images(path):
|
6 |
+
images = [Image.open(os.path.join(path,im)) for im in os.listdir(path)]
|
7 |
+
paths = os.listdir(path)
|
8 |
+
return([(im, path) for im, path in zip(images,paths)])
|
9 |
+
|
10 |
|
11 |
with gr.Blocks() as demo:
|
12 |
gr.Markdown("""
|
|
|
15 |
gr.HTML('''
|
16 |
<p style="margin-bottom: 10px; font-size: 94%">This is the demo page for the "Stable Bias" paper, which aims to explore and quantify social biases in text-to-image systems. <br> This work was done by <a href='https://huggingface.co/sasha' style='text-decoration: underline;' target='_blank'> Alexandra Sasha Luccioni (Hugging Face) </a>, <a href='https://huggingface.co/cakiki' style='text-decoration: underline;' target='_blank'> Christopher Akiki (ScaDS.AI, Leipzig University)</a>, <a href='https://huggingface.co/meg' style='text-decoration: underline;' target='_blank'> Margaret Mitchell (Hugging Face) </a> and <a href='https://huggingface.co/yjernite' style='text-decoration: underline;' target='_blank'> Yacine Jernite (Hugging Face) </a> .</p>
|
17 |
''')
|
18 |
+
examples_path= "images/examples"
|
19 |
+
examples_gallery = gr.Gallery(get_images(examples_path),
|
20 |
+
label="Example images", show_label=False, elem_id="gallery").style(grid=[1,6], height="auto")
|
21 |
|
22 |
gr.HTML('''
|
23 |
<p style="margin-bottom: 14px; font-size: 100%"> As AI-enabled Text-to-Image systems are becoming increasingly used, characterizing the social biases they exhibit is a necessary first step to lowering their risk of discriminatory outcomes. <br> We propose a new method for exploring and quantifying social biases in these kinds of systems by directly comparing collections of generated images designed to showcase a system’s variation across social attributes — gender and ethnicity — and target attributes for bias evaluation — professions and gender-coded adjectives. <br> We compare three models: Stable Diffusion v.1.4, Stable Diffusion v.2., and Dall-E 2, and present some of our key findings below:</p>
|
|
|
62 |
with gr.Row():
|
63 |
gr.HTML('''
|
64 |
<p style="margin-bottom: 14px; font-size: 100%"> TO DO: talk about what we see above. <br> Continue exploring the demo on your own to uncover other patterns! </p>''')
|
65 |
+
|
66 |
+
with gr.Accordion("Comparing model generations", open=False):
|
67 |
+
gr.HTML('''
|
68 |
+
<p style="margin-bottom: 14px; font-size: 100%"> One of the goals of our study was allowing users to compare model generations across professions in an open-ended way, uncovering patterns and trends on their own. This is why we created the <a href='https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer' style='text-decoration: underline;' target='_blank'> Diffusion Bias Explorer </a> and the <a href='https://huggingface.co/spaces/society-ethics/Average_diffusion_faces' style='text-decoration: underline;' target='_blank'> Average Diffusion Faces </a> tools. <br> We show some of their functionalities below: </p> ''')
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Column():
|
71 |
+
impath = "images/biasexplorer"
|
72 |
+
biasexplorer_gallery = gr.Gallery([os.path.join(impath,im) for im in os.listdir(impath)],
|
73 |
+
label="Bias explorer images", show_label=False, elem_id="gallery").style(grid=2, height="auto")
|
74 |
+
with gr.Column():
|
75 |
+
gr.HTML('''
|
76 |
+
<p style="margin-bottom: 14px; font-size: 100%"> Comparing generations both between two models and within a single model can help uncover trends and patterns that are hard to measure using quantitative approaches. </p>''')
|
77 |
+
with gr.Row():
|
78 |
+
impath = "images/averagefaces"
|
79 |
+
average_gallery = gr.Gallery([os.path.join(impath,im) for im in os.listdir(impath)],
|
80 |
+
label="Average Face images", show_label=False, elem_id="gallery").style(grid=3, height="auto")
|
81 |
+
gr.HTML('''
|
82 |
+
<p style="margin-bottom: 14px; font-size: 100%"> Looking at the average faces for a given profession across multiple models can help see the dominant characteristics of that profession, as well as how much variation there is (based on how fuzzy the image is). </p>''')
|
83 |
+
|
84 |
+
with gr.Accordion("Exploring the color space of generated images", open=False):
|
85 |
+
gr.HTML('''
|
86 |
+
<p style="margin-bottom: 14px; font-size: 100%"> TODO Chris </p> ''')
|
87 |
+
|
88 |
+
with gr.Accordion("Exploring the nearest neighbors of generated images", open=False):
|
89 |
+
gr.HTML('''
|
90 |
+
<p style="margin-bottom: 14px; font-size: 100%"> TODO Chris </p> ''')
|
91 |
+
|
92 |
+
gr.Markdown("""
|
93 |
+
### All of the tools created as part of this project:
|
94 |
+
""")
|
95 |
+
gr.HTML('''
|
96 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
97 |
+
<a href='https://huggingface.co/spaces/society-ethics/Average_diffusion_faces' style='text-decoration: underline;' target='_blank'> Average Diffusion Faces </a> <br>
|
98 |
+
<a href='https://huggingface.co/spaces/society-ethics/DiffusionBiasExplorer' style='text-decoration: underline;' target='_blank'> Diffusion Bias Explorer </a> <br>
|
99 |
+
<a href='https://huggingface.co/spaces/society-ethics/DiffusionClustering' style='text-decoration: underline;' target='_blank'> Diffusion Cluster Explorer </a>
|
100 |
+
<a href='https://huggingface.co/spaces/society-ethics/DiffusionFaceClustering' style='text-decoration: underline;' target='_blank'> Identity Representation Demo </a>
|
101 |
+
<a href='https://huggingface.co/spaces/tti-bias/identities-bovw-knn' style='text-decoration: underline;' target='_blank'> BoVW Nearest Neighbors Explorer </a> <br>
|
102 |
+
<a href='https://huggingface.co/spaces/tti-bias/professions-bovw-knn' style='text-decoration: underline;' target='_blank'> BoVW Professions Explorer </a> <br>
|
103 |
+
<a href='https://huggingface.co/spaces/tti-bias/identities-colorfulness-knn' style='text-decoration: underline;' target='_blank'> Colorfulness Profession Explorer </a> <br>
|
104 |
+
<a href='https://huggingface.co/spaces/tti-bias/professions-colorfulness-knn' style='text-decoration: underline;' target='_blank'> Colorfulness Identities Explorer </a> <br> </p>
|
105 |
+
''')
|
106 |
+
|
107 |
demo.launch(debug=True)
|
images/averagefaces/CEO.png
ADDED
images/averagefaces/hairdresser.png
ADDED
images/averagefaces/jailer.png
ADDED
images/averagefaces/janitor.png
ADDED
images/averagefaces/manicurist.png
ADDED
images/averagefaces/postal_worker.png
ADDED
images/examples/bus driver (SD v2).png
ADDED
images/examples/carpenter (SD v1.4).png
ADDED
images/examples/fitness instructor (SD v2).png
ADDED
images/examples/pilot (Dall-E 2).png
ADDED
images/examples/scientist (Dall-E 2).png
ADDED
images/examples/security guard (SD v1.4).png
ADDED