weights2weights / app.py
linoyts's picture
linoyts HF staff
Update app.py
d6adfd6 verified
raw
history blame
21.3 kB
import os
# os.system("pip uninstall -y gradio")
# #os.system('pip install gradio==3.43.1')
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import gradio as gr
import sys
import os
import tqdm
sys.path.append(os.path.abspath(os.path.join("", "..")))
import torch
import gc
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from utils import load_models, save_model_w2w, save_model_for_diffusers
from editing import get_direction, debias
from sampling import sample_weights
from lora_w2w import LoRAw2w
from huggingface_hub import snapshot_download
import numpy as np
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global network
device = "cuda:0"
generator = torch.Generator(device=device)
from gradio_imageslider import ImageSlider
models_path = snapshot_download(repo_id="Snapchat/w2w")
mean = torch.load(f"{models_path}/files/mean.pt").bfloat16().to(device)
std = torch.load(f"{models_path}/files/std.pt").bfloat16().to(device)
v = torch.load(f"{models_path}/files/V.pt").bfloat16().to(device)
proj = torch.load(f"{models_path}/files/proj_1000pc.pt").bfloat16().to(device)
df = torch.load(f"{models_path}/files/identity_df.pt")
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt").bfloat16().to(device)
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
def sample_model():
global unet
del unet
global network
unet, _, _, _, _ = load_models(device)
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
@torch.no_grad()
def inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
return image
@torch.no_grad()
def edit_inference(input_image, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global young
global pointy
global wavy
global large
original_weights = network.proj.clone()
#pad to same number of PCs
pcs_original = original_weights.shape[1]
pcs_edits = young.shape[1]
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
young_pad = torch.cat((young, padding), 1)
pointy_pad = torch.cat((pointy, padding), 1)
wavy_pad = torch.cat((wavy, padding), 1)
large_pad = torch.cat((large, padding), 1)
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*8e5*large_pad
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
if t>start_noise:
pass
elif t<=start_noise:
network.proj = torch.nn.Parameter(edited_weights)
network.reset()
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
#reset weights back to original
network.proj = torch.nn.Parameter(original_weights)
network.reset()
return (image, input_image["background"])
def sample_then_run():
sample_model()
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(network.proj, "model.pt" )
return image, "model.pt"
global young
global pointy
global wavy
global large
young = get_direction(df, "Young", pinverse, 1000, device)
young = debias(young, "Male", df, pinverse, device)
young = debias(young, "Pointy_Nose", df, pinverse, device)
young = debias(young, "Wavy_Hair", df, pinverse, device)
young = debias(young, "Chubby", df, pinverse, device)
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
pointy = debias(pointy, "Young", df, pinverse, device)
pointy = debias(pointy, "Male", df, pinverse, device)
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
pointy = debias(pointy, "Chubby", df, pinverse, device)
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
wavy = debias(wavy, "Young", df, pinverse, device)
wavy = debias(wavy, "Male", df, pinverse, device)
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
wavy = debias(wavy, "Chubby", df, pinverse, device)
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
large = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
large = debias(large, "Male", df, pinverse, device)
large = debias(large, "Young", df, pinverse, device)
large = debias(large, "Pointy_Nose", df, pinverse, device)
large = debias(large, "Wavy_Hair", df, pinverse, device)
large = debias(large, "Mustache", df, pinverse, device)
large = debias(large, "No_Beard", df, pinverse, device)
large = debias(large, "Sideburns", df, pinverse, device)
large = debias(large, "Big_Nose", df, pinverse, device)
large = debias(large, "Big_Lips", df, pinverse, device)
large = debias(large, "Black_Hair", df, pinverse, device)
large = debias(large, "Brown_Hair", df, pinverse, device)
large = debias(large, "Pale_Skin", df, pinverse, device)
large = debias(large, "Heavy_Makeup", df, pinverse, device)
class CustomImageDataset(Dataset):
def __init__(self, images, transform=None):
self.images = images
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
if self.transform:
image = self.transform(image)
return image
def invert(image, mask, pcs=10000, epochs=400, weight_decay = 1e-10, lr=1e-1):
global unet
del unet
global network
unet, _, _, _, _ = load_models(device)
proj = torch.zeros(1,pcs).bfloat16().to(device)
network = LoRAw2w( proj, mean, std, v[:, :pcs],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
### load mask
mask = transforms.Resize((64,64), interpolation=transforms.InterpolationMode.BILINEAR)(mask)
mask = torchvision.transforms.functional.pil_to_tensor(mask).unsqueeze(0).to(device).bfloat16()[:,0,:,:].unsqueeze(1)
### check if an actual mask was draw, otherwise mask is just all ones
if torch.sum(mask) == 0:
mask = torch.ones((1,1,64,64)).to(device).bfloat16()
### single image dataset
image_transforms = transforms.Compose([transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop(512),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
train_dataset = CustomImageDataset(image, transform=image_transforms)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
### optimizer
optim = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)
### training loop
unet.train()
for epoch in tqdm.tqdm(range(epochs)):
for batch in train_dataloader:
### prepare inputs
batch = batch.to(device).bfloat16()
latents = vae.encode(batch).latent_dist.sample()
latents = latents*0.18215
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
text_input = tokenizer("sks person", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
### loss + sgd step
with network:
model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
loss = torch.nn.functional.mse_loss(mask*model_pred.float(), mask*noise.float(), reduction="mean")
optim.zero_grad()
loss.backward()
optim.step()
### return optimized network
return network
def run_inversion(input_image, pcs, epochs, weight_decay,lr):
global network
print(len(input_image["layers"]))
init_image = input_image["background"].convert("RGB").resize((512, 512))
mask = input_image["layers"][0].convert("RGB").resize((512, 512))
network = invert([init_image], mask, pcs, epochs, weight_decay,lr)
#sample an image
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(network.proj, "model.pt" )
return (image,init_image), "model.pt"
def file_upload(file):
global unet
del unet
global network
global device
proj = torch.load(file.name).to(device)
#pad to 10000 Principal components to keep everything consistent
pcs = proj.shape[1]
padding = torch.zeros((1,10000-pcs)).to(device)
proj = torch.cat((proj, padding), 1)
unet, _, _, _, _ = load_models(device)
network = LoRAw2w( proj, mean, std, v[:, :10000],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
return image
intro = """
<div style="display: flex;align-items: center;justify-content: center">
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">weights2weights</h1>
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Interpreting the Weight Space of Customized Diffusion Models</h3>
</div>
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
<a href="https://snap-research.github.io/weights2weights/" target="_blank">project page</a> | <a href="https://arxiv.org/abs/2406.09413" target="_blank">paper</a>
|
<a href="https://huggingface.co/spaces/Snapchat/w2w-demo?duplicate=true" target="_blank" style="
display: inline-block;
">
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML(intro)
gr.Markdown("""<div style="text-align: justify;"> Click below to sample an identity-encoding model, or upload an image below and click \"invert\". You can also optionally draw over the face to define a mask. To use model previously downloaded from this demo see \"Uplaoding a model\" in the Advanced options""")
with gr.Column():
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload image and draw to define mask",
# height=512, width=512, brush_color='#00FFFF', mask_opacity=0.6)
input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Upload image and draw to define mask",
height=512, width=512, brush=gr.Brush(), layers=False)
with gr.Row():
sample = gr.Button("Sample New Model")
invert_button = gr.Button("Invert")
with gr.Column():
image_slider = ImageSlider(position=1., type="pil", height=512, width=512)
# gallery1 = gr.Image(label="Identity from Original Model",height=512, width=512, interactive=False)
prompt1 = gr.Textbox(label="Prompt",
info="Make sure to include 'sks person'" ,
placeholder="sks person",
value="sks person")
# Editing
with gr.Column():
#gallery2 = gr.Image(label="Identity from Edited Model", interactive=False, visible=False )
with gr.Row():
a1 = gr.Slider(label="- Young +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a2 = gr.Slider(label="- Pointy Nose +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
with gr.Row():
a3 = gr.Slider(label="- Curly Hair +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a4 = gr.Slider(label="- Thick Eyebrows +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
# prompt2 = gr.Textbox(label="Prompt",
# info="Make sure to include 'sks person'" ,
# placeholder="sks person",
# value="sks person", visible=False)
# seed2 = gr.Number(value=5, label="Seed", precision=0, interactive=True, visible=False)
# submit2 = gr.Button("Generate", visible=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Tab("Inversion"):
with gr.Row():
lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
with gr.Row():
epochs = gr.Slider(label="Epochs", value=400, step=1, minimum=1, maximum=2000, interactive=True)
weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
with gr.Tab("Sampling"):
with gr.Row():
cfg1= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
steps1 = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
seed1 = gr.Number(value=5, label="Seed", precision=0, interactive=True)
with gr.Row():
negative_prompt1 = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
# with gr.Tab("Editing"):
# with gr.Column():
# cfg2 = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
# steps2 = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
# injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
# negative_prompt2 = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
with gr.Tab("Uploading a model"):
gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
file_input = gr.File(label="Upload Model", container=True)
submit1 = gr.Button("Generate")
gr.Markdown("""<div style="text-align: justify;"> After sampling a new model or inverting, you can download the model below.""")
with gr.Row():
file_output = gr.File(label="Download Sampled Model", container=True, interactive=False)
invert_button.click(fn=run_inversion,
inputs=[input_image, pcs, epochs, weight_decay,lr],
outputs = [image_slider, file_output])
sample.click(fn=sample_then_run, outputs=[input_image, file_output])
# submit1.click(fn=inference,
# inputs=[prompt1, negative_prompt1, cfg1, steps1, seed1],
# outputs=gallery1)
# submit1.click(fn=edit_inference,
# inputs=[input_image, prompt1, negative_prompt1, cfg1, steps1, seed1, injection_step, a1, a2, a3, a4],
# outputs=image_slider)
submit1.click(
fn=edit_inference, inputs=[input_image, prompt1, negative_prompt1, cfg1, steps1, seed1, injection_step, a1, a2, a3, a4], outputs=[image_slider]
)
file_input.change(fn=file_upload, inputs=file_input, outputs = input_image)
demo.queue().launch()