Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,258 Bytes
2cd4b2a eb522ee 2cd4b2a c15417b eb710fe aa1da5e eb710fe dfca074 c15417b eb710fe eb522ee f72cee5 c15417b eb710fe f72cee5 eb522ee a020647 c15417b 4e07682 eb710fe 4e07682 eb710fe c15417b f72cee5 a020647 f72cee5 a020647 c15417b a020647 eb522ee a020647 cbec252 a020647 c15417b cbec252 f72cee5 ae6aebd aa1da5e f72cee5 eb522ee a020647 f72cee5 a020647 ae6aebd a020647 aa1da5e a020647 d8a6bcb ae6aebd f72cee5 eb710fe f72cee5 eb710fe a020647 eb710fe a020647 eb710fe a020647 eb710fe a020647 eb710fe a020647 cad361f eb710fe a020647 c15417b a020647 d8a6bcb a020647 d8a6bcb c15417b a020647 ae6aebd a020647 ae6aebd d8a6bcb a020647 ae6aebd d8a6bcb a020647 ae6aebd d8a6bcb ae6aebd d8a6bcb a020647 c15417b cad361f c15417b cad361f c15417b d8a6bcb c15417b d8a6bcb d6adfd6 d8a6bcb c15417b aa1da5e d8a6bcb c15417b aa1da5e c15417b d8a6bcb aa1da5e d8a6bcb aa1da5e d8a6bcb aa1da5e f72cee5 aa1da5e d8a6bcb bcb24fd eb710fe c15417b 78e99c3 f7f94d9 78e99c3 d8a6bcb eb522ee 78e99c3 eb522ee 78e99c3 d8a6bcb aa1da5e 78e99c3 ae6aebd 78e99c3 d8a6bcb 78e99c3 eb522ee 78e99c3 eb522ee 78e99c3 eb522ee 78e99c3 eb522ee 78e99c3 eb522ee 78e99c3 d8a6bcb 78e99c3 d8a6bcb aa1da5e eb522ee aa1da5e 6e50401 eb522ee d8a6bcb a020647 d8a6bcb cad361f aa1da5e c15417b eb522ee eb710fe 78e99c3 eb522ee f72cee5 c15417b d8a6bcb c15417b d8a6bcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import os
# os.system("pip uninstall -y gradio")
# #os.system('pip install gradio==3.43.1')
import torch
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import gradio as gr
import sys
import os
import tqdm
sys.path.append(os.path.abspath(os.path.join("", "..")))
import torch
import gc
import warnings
warnings.filterwarnings("ignore")
from PIL import Image
from utils import load_models, save_model_w2w, save_model_for_diffusers
from editing import get_direction, debias
from sampling import sample_weights
from lora_w2w import LoRAw2w
from huggingface_hub import snapshot_download
import numpy as np
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global network
device = "cuda:0"
generator = torch.Generator(device=device)
from gradio_imageslider import ImageSlider
models_path = snapshot_download(repo_id="Snapchat/w2w")
mean = torch.load(f"{models_path}/files/mean.pt").bfloat16().to(device)
std = torch.load(f"{models_path}/files/std.pt").bfloat16().to(device)
v = torch.load(f"{models_path}/files/V.pt").bfloat16().to(device)
proj = torch.load(f"{models_path}/files/proj_1000pc.pt").bfloat16().to(device)
df = torch.load(f"{models_path}/files/identity_df.pt")
weight_dimensions = torch.load(f"{models_path}/files/weight_dimensions.pt")
pinverse = torch.load(f"{models_path}/files/pinverse_1000pc.pt").bfloat16().to(device)
unet, vae, text_encoder, tokenizer, noise_scheduler = load_models(device)
def sample_model():
global unet
del unet
global network
unet, _, _, _, _ = load_models(device)
network = sample_weights(unet, proj, mean, std, v[:, :1000], device, factor = 1.00)
@torch.no_grad()
def inference(prompt, negative_prompt, guidance_scale, ddim_steps, seed):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
return image
@torch.no_grad()
def edit_inference(input_image, prompt, negative_prompt, guidance_scale, ddim_steps, seed, start_noise, a1, a2, a3, a4):
global device
global generator
global unet
global vae
global text_encoder
global tokenizer
global noise_scheduler
global young
global pointy
global wavy
global large
original_weights = network.proj.clone()
#pad to same number of PCs
pcs_original = original_weights.shape[1]
pcs_edits = young.shape[1]
padding = torch.zeros((1,pcs_original-pcs_edits)).to(device)
young_pad = torch.cat((young, padding), 1)
pointy_pad = torch.cat((pointy, padding), 1)
wavy_pad = torch.cat((wavy, padding), 1)
large_pad = torch.cat((large, padding), 1)
edited_weights = original_weights+a1*1e6*young_pad+a2*1e6*pointy_pad+a3*1e6*wavy_pad+a4*8e5*large_pad
generator = generator.manual_seed(seed)
latents = torch.randn(
(1, unet.in_channels, 512 // 8, 512 // 8),
generator = generator,
device = device
).bfloat16()
text_input = tokenizer(prompt, padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
max_length = text_input.input_ids.shape[-1]
uncond_input = tokenizer(
[negative_prompt], padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
noise_scheduler.set_timesteps(ddim_steps)
latents = latents * noise_scheduler.init_noise_sigma
for i,t in enumerate(tqdm.tqdm(noise_scheduler.timesteps)):
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, timestep=t)
if t>start_noise:
pass
elif t<=start_noise:
network.proj = torch.nn.Parameter(edited_weights)
network.reset()
with network:
noise_pred = unet(latent_model_input, t, encoder_hidden_states=text_embeddings, timestep_cond= None).sample
#guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().float().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype("uint8"))
#reset weights back to original
network.proj = torch.nn.Parameter(original_weights)
network.reset()
return (image, input_image["background"])
def sample_then_run():
sample_model()
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(network.proj, "model.pt" )
return image, "model.pt"
global young
global pointy
global wavy
global large
young = get_direction(df, "Young", pinverse, 1000, device)
young = debias(young, "Male", df, pinverse, device)
young = debias(young, "Pointy_Nose", df, pinverse, device)
young = debias(young, "Wavy_Hair", df, pinverse, device)
young = debias(young, "Chubby", df, pinverse, device)
pointy = get_direction(df, "Pointy_Nose", pinverse, 1000, device)
pointy = debias(pointy, "Young", df, pinverse, device)
pointy = debias(pointy, "Male", df, pinverse, device)
pointy = debias(pointy, "Wavy_Hair", df, pinverse, device)
pointy = debias(pointy, "Chubby", df, pinverse, device)
pointy = debias(pointy, "Heavy_Makeup", df, pinverse, device)
wavy = get_direction(df, "Wavy_Hair", pinverse, 1000, device)
wavy = debias(wavy, "Young", df, pinverse, device)
wavy = debias(wavy, "Male", df, pinverse, device)
wavy = debias(wavy, "Pointy_Nose", df, pinverse, device)
wavy = debias(wavy, "Chubby", df, pinverse, device)
wavy = debias(wavy, "Heavy_Makeup", df, pinverse, device)
large = get_direction(df, "Bushy_Eyebrows", pinverse, 1000, device)
large = debias(large, "Male", df, pinverse, device)
large = debias(large, "Young", df, pinverse, device)
large = debias(large, "Pointy_Nose", df, pinverse, device)
large = debias(large, "Wavy_Hair", df, pinverse, device)
large = debias(large, "Mustache", df, pinverse, device)
large = debias(large, "No_Beard", df, pinverse, device)
large = debias(large, "Sideburns", df, pinverse, device)
large = debias(large, "Big_Nose", df, pinverse, device)
large = debias(large, "Big_Lips", df, pinverse, device)
large = debias(large, "Black_Hair", df, pinverse, device)
large = debias(large, "Brown_Hair", df, pinverse, device)
large = debias(large, "Pale_Skin", df, pinverse, device)
large = debias(large, "Heavy_Makeup", df, pinverse, device)
class CustomImageDataset(Dataset):
def __init__(self, images, transform=None):
self.images = images
self.transform = transform
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
image = self.images[idx]
if self.transform:
image = self.transform(image)
return image
def invert(image, mask, pcs=10000, epochs=400, weight_decay = 1e-10, lr=1e-1):
global unet
del unet
global network
unet, _, _, _, _ = load_models(device)
proj = torch.zeros(1,pcs).bfloat16().to(device)
network = LoRAw2w( proj, mean, std, v[:, :pcs],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
### load mask
mask = transforms.Resize((64,64), interpolation=transforms.InterpolationMode.BILINEAR)(mask)
mask = torchvision.transforms.functional.pil_to_tensor(mask).unsqueeze(0).to(device).bfloat16()[:,0,:,:].unsqueeze(1)
### check if an actual mask was draw, otherwise mask is just all ones
if torch.sum(mask) == 0:
mask = torch.ones((1,1,64,64)).to(device).bfloat16()
### single image dataset
image_transforms = transforms.Compose([transforms.Resize(512, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.RandomCrop(512),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])])
train_dataset = CustomImageDataset(image, transform=image_transforms)
train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=1, shuffle=True)
### optimizer
optim = torch.optim.Adam(network.parameters(), lr=lr, weight_decay=weight_decay)
### training loop
unet.train()
for epoch in tqdm.tqdm(range(epochs)):
for batch in train_dataloader:
### prepare inputs
batch = batch.to(device).bfloat16()
latents = vae.encode(batch).latent_dist.sample()
latents = latents*0.18215
noise = torch.randn_like(latents)
bsz = latents.shape[0]
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
text_input = tokenizer("sks person", padding="max_length", max_length=tokenizer.model_max_length, truncation=True, return_tensors="pt")
text_embeddings = text_encoder(text_input.input_ids.to(device))[0]
### loss + sgd step
with network:
model_pred = unet(noisy_latents, timesteps, text_embeddings).sample
loss = torch.nn.functional.mse_loss(mask*model_pred.float(), mask*noise.float(), reduction="mean")
optim.zero_grad()
loss.backward()
optim.step()
### return optimized network
return network
def run_inversion(input_image, pcs, epochs, weight_decay,lr):
global network
print(len(input_image["layers"]))
init_image = input_image["background"].convert("RGB").resize((512, 512))
mask = input_image["layers"][0].convert("RGB").resize((512, 512))
network = invert([init_image], mask, pcs, epochs, weight_decay,lr)
#sample an image
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
torch.save(network.proj, "model.pt" )
return (image,init_image), "model.pt"
def file_upload(file):
global unet
del unet
global network
global device
proj = torch.load(file.name).to(device)
#pad to 10000 Principal components to keep everything consistent
pcs = proj.shape[1]
padding = torch.zeros((1,10000-pcs)).to(device)
proj = torch.cat((proj, padding), 1)
unet, _, _, _, _ = load_models(device)
network = LoRAw2w( proj, mean, std, v[:, :10000],
unet,
rank=1,
multiplier=1.0,
alpha=27.0,
train_method="xattn-strict"
).to(device, torch.bfloat16)
prompt = "sks person"
negative_prompt = "low quality, blurry, unfinished, nudity, weapon"
seed = 5
cfg = 3.0
steps = 50
image = inference( prompt, negative_prompt, cfg, steps, seed)
return image
intro = """
<div style="display: flex;align-items: center;justify-content: center">
<h1 style="margin-left: 12px;text-align: center;margin-bottom: 7px;display: inline-block">weights2weights</h1>
<h3 style="display: inline-block;margin-left: 10px;margin-top: 6px;font-weight: 500">Interpreting the Weight Space of Customized Diffusion Models</h3>
</div>
<p style="font-size: 0.95rem;margin: 0rem;line-height: 1.2em;margin-top:1em;display: inline-block">
<a href="https://snap-research.github.io/weights2weights/" target="_blank">project page</a> | <a href="https://arxiv.org/abs/2406.09413" target="_blank">paper</a>
|
<a href="https://huggingface.co/spaces/Snapchat/w2w-demo?duplicate=true" target="_blank" style="
display: inline-block;
">
<img style="margin-top: -1em;margin-bottom: 0em;position: absolute;" src="https://bit.ly/3CWLGkA" alt="Duplicate Space"></a>
</p>
"""
with gr.Blocks(css="style.css") as demo:
gr.HTML(intro)
gr.Markdown("""
Click sample (to sample an identity) *or* upload an image & click `invert` to get started ✨
> 💡 When inverting, draw a mask over the face for improved results.
> To use a model previously downloaded from this demo see `Uplaoding a model` in the `Advanced options`
""")
with gr.Column():
with gr.Row():
with gr.Column():
# input_image = gr.Image(source='upload', elem_id="image_upload", tool='sketch', type='pil', label="Upload image and draw to define mask",
# height=512, width=512, brush_color='#00FFFF', mask_opacity=0.6)
input_image = gr.ImageEditor(elem_id="image_upload", type='pil', label="Upload image and draw to define mask",
height=512, width=512, brush=gr.Brush(), layers=False)
with gr.Row():
sample = gr.Button("Sample New Model")
invert_button = gr.Button("Invert")
with gr.Column():
image_slider = ImageSlider(position=1., type="pil", height=512, width=512)
# gallery1 = gr.Image(label="Identity from Original Model",height=512, width=512, interactive=False)
prompt1 = gr.Textbox(label="Prompt",
info="Make sure to include 'sks person'" ,
placeholder="sks person",
value="sks person")
# Editing
with gr.Column():
#gallery2 = gr.Image(label="Identity from Edited Model", interactive=False, visible=False )
with gr.Row():
a1 = gr.Slider(label="- Young +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a2 = gr.Slider(label="- Pointy Nose +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
with gr.Row():
a3 = gr.Slider(label="- Curly Hair +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
a4 = gr.Slider(label="- Thick Eyebrows +", value=0, step=0.001, minimum=-1, maximum=1, interactive=True)
# prompt2 = gr.Textbox(label="Prompt",
# info="Make sure to include 'sks person'" ,
# placeholder="sks person",
# value="sks person", visible=False)
# seed2 = gr.Number(value=5, label="Seed", precision=0, interactive=True, visible=False)
# submit2 = gr.Button("Generate", visible=False)
with gr.Accordion("Advanced Options", open=False):
with gr.Tab("Inversion"):
with gr.Row():
lr = gr.Number(value=1e-1, label="Learning Rate", interactive=True)
pcs = gr.Slider(label="# Principal Components", value=10000, step=1, minimum=1, maximum=10000, interactive=True)
with gr.Row():
epochs = gr.Slider(label="Epochs", value=400, step=1, minimum=1, maximum=2000, interactive=True)
weight_decay = gr.Number(value=1e-10, label="Weight Decay", interactive=True)
with gr.Tab("Sampling"):
with gr.Row():
cfg1= gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
steps1 = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
seed1 = gr.Number(value=5, label="Seed", precision=0, interactive=True)
with gr.Row():
negative_prompt1 = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
# with gr.Tab("Editing"):
# with gr.Column():
# cfg2 = gr.Slider(label="CFG", value=3.0, step=0.1, minimum=0, maximum=10, interactive=True)
# steps2 = gr.Slider(label="Inference Steps", value=50, step=1, minimum=0, maximum=100, interactive=True)
# injection_step = gr.Slider(label="Injection Step", value=800, step=1, minimum=0, maximum=1000, interactive=True)
# negative_prompt2 = gr.Textbox(label="Negative Prompt", placeholder="low quality, blurry, unfinished, nudity, weapon", value="low quality, blurry, unfinished, nudity, weapon")
with gr.Tab("Uploading a model"):
gr.Markdown("""<div style="text-align: justify;">Upload a model below downloaded from this demo.""")
file_input = gr.File(label="Upload Model", container=True)
submit1 = gr.Button("Generate")
gr.Markdown("""<div style="text-align: justify;"> After sampling a new model or inverting, you can download the model below.""")
with gr.Row():
file_output = gr.File(label="Download Sampled Model", container=True, interactive=False)
invert_button.click(fn=run_inversion,
inputs=[input_image, pcs, epochs, weight_decay,lr],
outputs = [image_slider, file_output])
sample.click(fn=sample_then_run, outputs=[input_image, file_output])
# submit1.click(fn=inference,
# inputs=[prompt1, negative_prompt1, cfg1, steps1, seed1],
# outputs=gallery1)
# submit1.click(fn=edit_inference,
# inputs=[input_image, prompt1, negative_prompt1, cfg1, steps1, seed1, injection_step, a1, a2, a3, a4],
# outputs=image_slider)
submit1.click(
fn=edit_inference, inputs=[input_image, prompt1, negative_prompt1, cfg1, steps1, seed1, injection_step, a1, a2, a3, a4], outputs=[image_slider]
)
file_input.change(fn=file_upload, inputs=file_input, outputs = input_image)
demo.queue().launch() |