Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- .github/workflows/pre-commit.yaml +14 -0
- .github/workflows/publish-docker-image.yaml +60 -0
- .github/workflows/sync-hf.yaml +18 -0
- .gitignore +173 -0
- .pre-commit-config.yaml +14 -0
- Dockerfile +24 -0
- LICENSE +21 -0
- New Text Document.txt +17 -0
- README.md +170 -12
- pyproject.toml +61 -0
- ruff.toml +10 -0
- src/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav +3 -0
- src/f5_tts.egg-info/PKG-INFO +208 -0
- src/f5_tts.egg-info/SOURCES.txt +60 -0
- src/f5_tts.egg-info/dependency_links.txt +1 -0
- src/f5_tts.egg-info/entry_points.txt +5 -0
- src/f5_tts.egg-info/requires.txt +33 -0
- src/f5_tts.egg-info/top_level.txt +1 -0
- src/f5_tts/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav +3 -0
- src/f5_tts/api.py +138 -0
- src/f5_tts/eval/README.md +49 -0
- src/f5_tts/eval/ecapa_tdnn.py +330 -0
- src/f5_tts/eval/eval_infer_batch.py +197 -0
- src/f5_tts/eval/eval_infer_batch.sh +13 -0
- src/f5_tts/eval/eval_librispeech_test_clean.py +73 -0
- src/f5_tts/eval/eval_seedtts_testset.py +75 -0
- src/f5_tts/eval/utils_eval.py +397 -0
- src/f5_tts/infer/README.md +112 -0
- src/f5_tts/infer/examples/basic/basic.toml +10 -0
- src/f5_tts/infer/examples/basic/basic_ref_en.wav +0 -0
- src/f5_tts/infer/examples/basic/basic_ref_zh.wav +0 -0
- src/f5_tts/infer/examples/multi/country.flac +0 -0
- src/f5_tts/infer/examples/multi/main.flac +0 -0
- src/f5_tts/infer/examples/multi/story.toml +19 -0
- src/f5_tts/infer/examples/multi/story.txt +1 -0
- src/f5_tts/infer/examples/multi/town.flac +0 -0
- src/f5_tts/infer/examples/vocab.txt +2545 -0
- src/f5_tts/infer/infer_cli.py +200 -0
- src/f5_tts/infer/infer_gradio.py +729 -0
- src/f5_tts/infer/speech_edit.py +191 -0
- src/f5_tts/infer/utils_infer.py +439 -0
- src/f5_tts/model/__init__.py +10 -0
- src/f5_tts/model/backbones/README.md +20 -0
- src/f5_tts/model/backbones/dit.py +163 -0
- src/f5_tts/model/backbones/mmdit.py +146 -0
- src/f5_tts/model/backbones/unett.py +219 -0
- src/f5_tts/model/cfm.py +287 -0
- src/f5_tts/model/dataset.py +296 -0
- src/f5_tts/model/modules.py +581 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
src/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav filter=lfs diff=lfs merge=lfs -text
|
37 |
+
src/f5_tts/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav filter=lfs diff=lfs merge=lfs -text
|
.github/workflows/pre-commit.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: pre-commit
|
2 |
+
|
3 |
+
on:
|
4 |
+
pull_request:
|
5 |
+
push:
|
6 |
+
branches: [main]
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
pre-commit:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
steps:
|
12 |
+
- uses: actions/checkout@v3
|
13 |
+
- uses: actions/setup-python@v3
|
14 |
+
- uses: pre-commit/[email protected]
|
.github/workflows/publish-docker-image.yaml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Create and publish a Docker image
|
2 |
+
|
3 |
+
# Configures this workflow to run every time a change is pushed to the branch called `release`.
|
4 |
+
on:
|
5 |
+
push:
|
6 |
+
branches: ['main']
|
7 |
+
|
8 |
+
# Defines two custom environment variables for the workflow. These are used for the Container registry domain, and a name for the Docker image that this workflow builds.
|
9 |
+
env:
|
10 |
+
REGISTRY: ghcr.io
|
11 |
+
IMAGE_NAME: ${{ github.repository }}
|
12 |
+
|
13 |
+
# There is a single job in this workflow. It's configured to run on the latest available version of Ubuntu.
|
14 |
+
jobs:
|
15 |
+
build-and-push-image:
|
16 |
+
runs-on: ubuntu-latest
|
17 |
+
# Sets the permissions granted to the `GITHUB_TOKEN` for the actions in this job.
|
18 |
+
permissions:
|
19 |
+
contents: read
|
20 |
+
packages: write
|
21 |
+
#
|
22 |
+
steps:
|
23 |
+
- name: Checkout repository
|
24 |
+
uses: actions/checkout@v4
|
25 |
+
- name: Free Up GitHub Actions Ubuntu Runner Disk Space 🔧
|
26 |
+
uses: jlumbroso/free-disk-space@main
|
27 |
+
with:
|
28 |
+
# This might remove tools that are actually needed, if set to "true" but frees about 6 GB
|
29 |
+
tool-cache: false
|
30 |
+
|
31 |
+
# All of these default to true, but feel free to set to "false" if necessary for your workflow
|
32 |
+
android: true
|
33 |
+
dotnet: true
|
34 |
+
haskell: true
|
35 |
+
large-packages: false
|
36 |
+
swap-storage: false
|
37 |
+
docker-images: false
|
38 |
+
# Uses the `docker/login-action` action to log in to the Container registry registry using the account and password that will publish the packages. Once published, the packages are scoped to the account defined here.
|
39 |
+
- name: Log in to the Container registry
|
40 |
+
uses: docker/login-action@65b78e6e13532edd9afa3aa52ac7964289d1a9c1
|
41 |
+
with:
|
42 |
+
registry: ${{ env.REGISTRY }}
|
43 |
+
username: ${{ github.actor }}
|
44 |
+
password: ${{ secrets.GITHUB_TOKEN }}
|
45 |
+
# This step uses [docker/metadata-action](https://github.com/docker/metadata-action#about) to extract tags and labels that will be applied to the specified image. The `id` "meta" allows the output of this step to be referenced in a subsequent step. The `images` value provides the base name for the tags and labels.
|
46 |
+
- name: Extract metadata (tags, labels) for Docker
|
47 |
+
id: meta
|
48 |
+
uses: docker/metadata-action@9ec57ed1fcdbf14dcef7dfbe97b2010124a938b7
|
49 |
+
with:
|
50 |
+
images: ${{ env.REGISTRY }}/${{ env.IMAGE_NAME }}
|
51 |
+
# This step uses the `docker/build-push-action` action to build the image, based on your repository's `Dockerfile`. If the build succeeds, it pushes the image to GitHub Packages.
|
52 |
+
# It uses the `context` parameter to define the build's context as the set of files located in the specified path. For more information, see "[Usage](https://github.com/docker/build-push-action#usage)" in the README of the `docker/build-push-action` repository.
|
53 |
+
# It uses the `tags` and `labels` parameters to tag and label the image with the output from the "meta" step.
|
54 |
+
- name: Build and push Docker image
|
55 |
+
uses: docker/build-push-action@f2a1d5e99d037542a71f64918e516c093c6f3fc4
|
56 |
+
with:
|
57 |
+
context: .
|
58 |
+
push: true
|
59 |
+
tags: ${{ steps.meta.outputs.tags }}
|
60 |
+
labels: ${{ steps.meta.outputs.labels }}
|
.github/workflows/sync-hf.yaml
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to HF Space
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
trigger_curl:
|
10 |
+
runs-on: ubuntu-latest
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- name: Send cURL POST request
|
14 |
+
run: |
|
15 |
+
curl -X POST https://mrfakename-sync-f5.hf.space/gradio_api/call/refresh \
|
16 |
+
-s \
|
17 |
+
-H "Content-Type: application/json" \
|
18 |
+
-d "{\"data\": [\"${{ secrets.REFRESH_PASSWORD }}\"]}"
|
.gitignore
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Customed
|
2 |
+
.vscode/
|
3 |
+
tests/
|
4 |
+
runs/
|
5 |
+
data/
|
6 |
+
ckpts/
|
7 |
+
wandb/
|
8 |
+
results/
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
# Byte-compiled / optimized / DLL files
|
13 |
+
__pycache__/
|
14 |
+
*.py[cod]
|
15 |
+
*$py.class
|
16 |
+
|
17 |
+
# C extensions
|
18 |
+
*.so
|
19 |
+
|
20 |
+
# Distribution / packaging
|
21 |
+
.Python
|
22 |
+
build/
|
23 |
+
develop-eggs/
|
24 |
+
dist/
|
25 |
+
downloads/
|
26 |
+
eggs/
|
27 |
+
.eggs/
|
28 |
+
lib/
|
29 |
+
lib64/
|
30 |
+
parts/
|
31 |
+
sdist/
|
32 |
+
var/
|
33 |
+
wheels/
|
34 |
+
share/python-wheels/
|
35 |
+
*.egg-info/
|
36 |
+
.installed.cfg
|
37 |
+
*.egg
|
38 |
+
MANIFEST
|
39 |
+
|
40 |
+
# PyInstaller
|
41 |
+
# Usually these files are written by a python script from a template
|
42 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
43 |
+
*.manifest
|
44 |
+
*.spec
|
45 |
+
|
46 |
+
# Installer logs
|
47 |
+
pip-log.txt
|
48 |
+
pip-delete-this-directory.txt
|
49 |
+
|
50 |
+
# Unit test / coverage reports
|
51 |
+
htmlcov/
|
52 |
+
.tox/
|
53 |
+
.nox/
|
54 |
+
.coverage
|
55 |
+
.coverage.*
|
56 |
+
.cache
|
57 |
+
nosetests.xml
|
58 |
+
coverage.xml
|
59 |
+
*.cover
|
60 |
+
*.py,cover
|
61 |
+
.hypothesis/
|
62 |
+
.pytest_cache/
|
63 |
+
cover/
|
64 |
+
|
65 |
+
# Translations
|
66 |
+
*.mo
|
67 |
+
*.pot
|
68 |
+
|
69 |
+
# Django stuff:
|
70 |
+
*.log
|
71 |
+
local_settings.py
|
72 |
+
db.sqlite3
|
73 |
+
db.sqlite3-journal
|
74 |
+
|
75 |
+
# Flask stuff:
|
76 |
+
instance/
|
77 |
+
.webassets-cache
|
78 |
+
|
79 |
+
# Scrapy stuff:
|
80 |
+
.scrapy
|
81 |
+
|
82 |
+
# Sphinx documentation
|
83 |
+
docs/_build/
|
84 |
+
|
85 |
+
# PyBuilder
|
86 |
+
.pybuilder/
|
87 |
+
target/
|
88 |
+
|
89 |
+
# Jupyter Notebook
|
90 |
+
.ipynb_checkpoints
|
91 |
+
|
92 |
+
# IPython
|
93 |
+
profile_default/
|
94 |
+
ipython_config.py
|
95 |
+
|
96 |
+
# pyenv
|
97 |
+
# For a library or package, you might want to ignore these files since the code is
|
98 |
+
# intended to run in multiple environments; otherwise, check them in:
|
99 |
+
# .python-version
|
100 |
+
|
101 |
+
# pipenv
|
102 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
103 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
104 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
105 |
+
# install all needed dependencies.
|
106 |
+
#Pipfile.lock
|
107 |
+
|
108 |
+
# poetry
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
110 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
111 |
+
# commonly ignored for libraries.
|
112 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
113 |
+
#poetry.lock
|
114 |
+
|
115 |
+
# pdm
|
116 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
117 |
+
#pdm.lock
|
118 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
119 |
+
# in version control.
|
120 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
121 |
+
.pdm.toml
|
122 |
+
.pdm-python
|
123 |
+
.pdm-build/
|
124 |
+
|
125 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
126 |
+
__pypackages__/
|
127 |
+
|
128 |
+
# Celery stuff
|
129 |
+
celerybeat-schedule
|
130 |
+
celerybeat.pid
|
131 |
+
|
132 |
+
# SageMath parsed files
|
133 |
+
*.sage.py
|
134 |
+
|
135 |
+
# Environments
|
136 |
+
.env
|
137 |
+
.venv
|
138 |
+
env/
|
139 |
+
venv/
|
140 |
+
ENV/
|
141 |
+
env.bak/
|
142 |
+
venv.bak/
|
143 |
+
|
144 |
+
# Spyder project settings
|
145 |
+
.spyderproject
|
146 |
+
.spyproject
|
147 |
+
|
148 |
+
# Rope project settings
|
149 |
+
.ropeproject
|
150 |
+
|
151 |
+
# mkdocs documentation
|
152 |
+
/site
|
153 |
+
|
154 |
+
# mypy
|
155 |
+
.mypy_cache/
|
156 |
+
.dmypy.json
|
157 |
+
dmypy.json
|
158 |
+
|
159 |
+
# Pyre type checker
|
160 |
+
.pyre/
|
161 |
+
|
162 |
+
# pytype static type analyzer
|
163 |
+
.pytype/
|
164 |
+
|
165 |
+
# Cython debug symbols
|
166 |
+
cython_debug/
|
167 |
+
|
168 |
+
# PyCharm
|
169 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
170 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
171 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
172 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
173 |
+
#.idea/
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/astral-sh/ruff-pre-commit
|
3 |
+
# Ruff version.
|
4 |
+
rev: v0.7.0
|
5 |
+
hooks:
|
6 |
+
# Run the linter.
|
7 |
+
- id: ruff
|
8 |
+
args: [--fix]
|
9 |
+
# Run the formatter.
|
10 |
+
- id: ruff-format
|
11 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
12 |
+
rev: v2.3.0
|
13 |
+
hooks:
|
14 |
+
- id: check-yaml
|
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel
|
2 |
+
|
3 |
+
USER root
|
4 |
+
|
5 |
+
ARG DEBIAN_FRONTEND=noninteractive
|
6 |
+
|
7 |
+
LABEL github_repo="https://github.com/SWivid/F5-TTS"
|
8 |
+
|
9 |
+
RUN set -x \
|
10 |
+
&& apt-get update \
|
11 |
+
&& apt-get -y install wget curl man git less openssl libssl-dev unzip unar build-essential aria2 tmux vim \
|
12 |
+
&& apt-get install -y openssh-server sox libsox-fmt-all libsox-fmt-mp3 libsndfile1-dev ffmpeg \
|
13 |
+
&& rm -rf /var/lib/apt/lists/* \
|
14 |
+
&& apt-get clean
|
15 |
+
|
16 |
+
WORKDIR /workspace
|
17 |
+
|
18 |
+
RUN git clone https://github.com/SWivid/F5-TTS.git \
|
19 |
+
&& cd F5-TTS \
|
20 |
+
&& pip install -e .[eval]
|
21 |
+
|
22 |
+
ENV SHELL=/bin/bash
|
23 |
+
|
24 |
+
WORKDIR /workspace/F5-TTS
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 Yushen CHEN
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
New Text Document.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
https://github.com/SWivid/F5-TTS
|
2 |
+
|
3 |
+
|
4 |
+
|
5 |
+
#1 //conda create -n f5-tts python=3.10
|
6 |
+
conda activate f5-tts
|
7 |
+
|
8 |
+
# Launch a Gradio app (web interface)
|
9 |
+
f5-tts_infer-gradio
|
10 |
+
|
11 |
+
# Specify the port/host
|
12 |
+
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
|
13 |
+
|
14 |
+
# Launch a share link
|
15 |
+
f5-tts_infer-gradio --share
|
16 |
+
|
17 |
+
|
README.md
CHANGED
@@ -1,12 +1,170 @@
|
|
1 |
-
---
|
2 |
-
title: F5
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: F5-TTS
|
3 |
+
app_file: src\f5_tts\infer\infer_gradio.py
|
4 |
+
sdk: gradio
|
5 |
+
sdk_version: 4.44.1
|
6 |
+
---
|
7 |
+
# F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
|
8 |
+
|
9 |
+
[](https://github.com/SWivid/F5-TTS)
|
10 |
+
[](https://arxiv.org/abs/2410.06885)
|
11 |
+
[](https://swivid.github.io/F5-TTS/)
|
12 |
+
[](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
13 |
+
[](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
|
14 |
+
[](https://x-lance.sjtu.edu.cn/)
|
15 |
+
<img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto">
|
16 |
+
|
17 |
+
**F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
|
18 |
+
|
19 |
+
**E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).
|
20 |
+
|
21 |
+
**Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
|
22 |
+
|
23 |
+
### Thanks to all the contributors !
|
24 |
+
|
25 |
+
## News
|
26 |
+
- **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
|
27 |
+
|
28 |
+
## Installation
|
29 |
+
|
30 |
+
```bash
|
31 |
+
# Create a python 3.10 conda env (you could also use virtualenv)
|
32 |
+
conda create -n f5-tts python=3.10
|
33 |
+
conda activate f5-tts
|
34 |
+
|
35 |
+
# Install pytorch with your CUDA version, e.g.
|
36 |
+
pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
37 |
+
```
|
38 |
+
|
39 |
+
Then you can choose from a few options below:
|
40 |
+
|
41 |
+
### 1. As a pip package (if just for inference)
|
42 |
+
|
43 |
+
```bash
|
44 |
+
pip install git+https://github.com/SWivid/F5-TTS.git
|
45 |
+
```
|
46 |
+
|
47 |
+
### 2. Local editable (if also do training, finetuning)
|
48 |
+
|
49 |
+
```bash
|
50 |
+
git clone https://github.com/SWivid/F5-TTS.git
|
51 |
+
cd F5-TTS
|
52 |
+
pip install -e .
|
53 |
+
```
|
54 |
+
|
55 |
+
### 3. Docker usage
|
56 |
+
```bash
|
57 |
+
# Build from Dockerfile
|
58 |
+
docker build -t f5tts:v1 .
|
59 |
+
|
60 |
+
# Or pull from GitHub Container Registry
|
61 |
+
docker pull ghcr.io/swivid/f5-tts:main
|
62 |
+
```
|
63 |
+
|
64 |
+
|
65 |
+
## Inference
|
66 |
+
|
67 |
+
### 1. Gradio App
|
68 |
+
|
69 |
+
Currently supported features:
|
70 |
+
|
71 |
+
- Basic TTS with Chunk Inference
|
72 |
+
- Multi-Style / Multi-Speaker Generation
|
73 |
+
- Voice Chat powered by Qwen2.5-3B-Instruct
|
74 |
+
|
75 |
+
```bash
|
76 |
+
# Launch a Gradio app (web interface)
|
77 |
+
f5-tts_infer-gradio
|
78 |
+
|
79 |
+
# Specify the port/host
|
80 |
+
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
|
81 |
+
|
82 |
+
# Launch a share link
|
83 |
+
f5-tts_infer-gradio --share
|
84 |
+
```
|
85 |
+
|
86 |
+
### 2. CLI Inference
|
87 |
+
|
88 |
+
```bash
|
89 |
+
# Run with flags
|
90 |
+
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
91 |
+
f5-tts_infer-cli \
|
92 |
+
--model "F5-TTS" \
|
93 |
+
--ref_audio "ref_audio.wav" \
|
94 |
+
--ref_text "The content, subtitle or transcription of reference audio." \
|
95 |
+
--gen_text "Some text you want TTS model generate for you."
|
96 |
+
|
97 |
+
# Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
|
98 |
+
f5-tts_infer-cli
|
99 |
+
# Or with your own .toml file
|
100 |
+
f5-tts_infer-cli -c custom.toml
|
101 |
+
|
102 |
+
# Multi voice. See src/f5_tts/infer/README.md
|
103 |
+
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
|
104 |
+
```
|
105 |
+
|
106 |
+
### 3. More instructions
|
107 |
+
|
108 |
+
- In order to have better generation results, take a moment to read [detailed guidance](src/f5_tts/infer).
|
109 |
+
- The [Issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very useful, please try to find the solution by properly searching the keywords of problem encountered. If no answer found, then feel free to open an issue.
|
110 |
+
|
111 |
+
|
112 |
+
## Training
|
113 |
+
|
114 |
+
### 1. Gradio App
|
115 |
+
|
116 |
+
Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
|
117 |
+
|
118 |
+
```bash
|
119 |
+
# Quick start with Gradio web interface
|
120 |
+
f5-tts_finetune-gradio
|
121 |
+
```
|
122 |
+
|
123 |
+
|
124 |
+
## [Evaluation](src/f5_tts/eval)
|
125 |
+
|
126 |
+
|
127 |
+
## Development
|
128 |
+
|
129 |
+
Use pre-commit to ensure code quality (will run linters and formatters automatically)
|
130 |
+
|
131 |
+
```bash
|
132 |
+
pip install pre-commit
|
133 |
+
pre-commit install
|
134 |
+
```
|
135 |
+
|
136 |
+
When making a pull request, before each commit, run:
|
137 |
+
|
138 |
+
```bash
|
139 |
+
pre-commit run --all-files
|
140 |
+
```
|
141 |
+
|
142 |
+
Note: Some model components have linting exceptions for E722 to accommodate tensor notation
|
143 |
+
|
144 |
+
|
145 |
+
## Acknowledgements
|
146 |
+
|
147 |
+
- [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
|
148 |
+
- [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763) valuable datasets
|
149 |
+
- [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
|
150 |
+
- [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
|
151 |
+
- [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) as vocoder
|
152 |
+
- [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech) for evaluation tools
|
153 |
+
- [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
|
154 |
+
- [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
|
155 |
+
- [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
|
156 |
+
- [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
|
157 |
+
|
158 |
+
## Citation
|
159 |
+
If our work and codebase is useful for you, please cite as:
|
160 |
+
```
|
161 |
+
@article{chen-etal-2024-f5tts,
|
162 |
+
title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
|
163 |
+
author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
|
164 |
+
journal={arXiv preprint arXiv:2410.06885},
|
165 |
+
year={2024},
|
166 |
+
}
|
167 |
+
```
|
168 |
+
## License
|
169 |
+
|
170 |
+
Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.
|
pyproject.toml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 61.0", "setuptools-scm>=8.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "f5-tts"
|
7 |
+
dynamic = ["version"]
|
8 |
+
description = "F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching"
|
9 |
+
readme = "README.md"
|
10 |
+
license = {text = "MIT License"}
|
11 |
+
classifiers = [
|
12 |
+
"License :: OSI Approved :: MIT License",
|
13 |
+
"Operating System :: OS Independent",
|
14 |
+
"Programming Language :: Python :: 3",
|
15 |
+
]
|
16 |
+
dependencies = [
|
17 |
+
"accelerate>=0.33.0",
|
18 |
+
"bitsandbytes>0.37.0",
|
19 |
+
"cached_path",
|
20 |
+
"click",
|
21 |
+
"datasets",
|
22 |
+
"ema_pytorch>=0.5.2",
|
23 |
+
"gradio>=3.45.2",
|
24 |
+
"jieba",
|
25 |
+
"librosa",
|
26 |
+
"matplotlib",
|
27 |
+
"numpy<=1.26.4",
|
28 |
+
"pydub",
|
29 |
+
"pypinyin",
|
30 |
+
"safetensors",
|
31 |
+
"soundfile",
|
32 |
+
"tomli",
|
33 |
+
"torch>=2.0.0",
|
34 |
+
"torchaudio>=2.0.0",
|
35 |
+
"torchdiffeq",
|
36 |
+
"tqdm>=4.65.0",
|
37 |
+
"transformers",
|
38 |
+
"transformers_stream_generator",
|
39 |
+
"vocos",
|
40 |
+
"wandb",
|
41 |
+
"x_transformers>=1.31.14",
|
42 |
+
]
|
43 |
+
|
44 |
+
[project.optional-dependencies]
|
45 |
+
eval = [
|
46 |
+
"faster_whisper==0.10.1",
|
47 |
+
"funasr",
|
48 |
+
"jiwer",
|
49 |
+
"modelscope",
|
50 |
+
"zhconv",
|
51 |
+
"zhon",
|
52 |
+
]
|
53 |
+
|
54 |
+
[project.urls]
|
55 |
+
Homepage = "https://github.com/SWivid/F5-TTS"
|
56 |
+
|
57 |
+
[project.scripts]
|
58 |
+
"f5-tts_infer-cli" = "f5_tts.infer.infer_cli:main"
|
59 |
+
"f5-tts_infer-gradio" = "f5_tts.infer.infer_gradio:main"
|
60 |
+
"f5-tts_finetune-cli" = "f5_tts.train.finetune_cli:main"
|
61 |
+
"f5-tts_finetune-gradio" = "f5_tts.train.finetune_gradio:main"
|
ruff.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
line-length = 120
|
2 |
+
target-version = "py310"
|
3 |
+
|
4 |
+
[lint]
|
5 |
+
# Only ignore variables with names starting with "_".
|
6 |
+
dummy-variable-rgx = "^_.*$"
|
7 |
+
|
8 |
+
[lint.isort]
|
9 |
+
force-single-line = true
|
10 |
+
lines-after-imports = 2
|
src/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513c11b36a53076548433b6b01cc328742b4885850c20ecd2c11401ffe7ec25f
|
3 |
+
size 1202732
|
src/f5_tts.egg-info/PKG-INFO
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Metadata-Version: 2.1
|
2 |
+
Name: f5-tts
|
3 |
+
Version: 0.0.0
|
4 |
+
Summary: F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
|
5 |
+
License: MIT License
|
6 |
+
Project-URL: Homepage, https://github.com/SWivid/F5-TTS
|
7 |
+
Classifier: License :: OSI Approved :: MIT License
|
8 |
+
Classifier: Operating System :: OS Independent
|
9 |
+
Classifier: Programming Language :: Python :: 3
|
10 |
+
Description-Content-Type: text/markdown
|
11 |
+
License-File: LICENSE
|
12 |
+
Requires-Dist: accelerate>=0.33.0
|
13 |
+
Requires-Dist: bitsandbytes>0.37.0
|
14 |
+
Requires-Dist: cached_path
|
15 |
+
Requires-Dist: click
|
16 |
+
Requires-Dist: datasets
|
17 |
+
Requires-Dist: ema_pytorch>=0.5.2
|
18 |
+
Requires-Dist: gradio>=3.45.2
|
19 |
+
Requires-Dist: jieba
|
20 |
+
Requires-Dist: librosa
|
21 |
+
Requires-Dist: matplotlib
|
22 |
+
Requires-Dist: numpy<=1.26.4
|
23 |
+
Requires-Dist: pydub
|
24 |
+
Requires-Dist: pypinyin
|
25 |
+
Requires-Dist: safetensors
|
26 |
+
Requires-Dist: soundfile
|
27 |
+
Requires-Dist: tomli
|
28 |
+
Requires-Dist: torch>=2.0.0
|
29 |
+
Requires-Dist: torchaudio>=2.0.0
|
30 |
+
Requires-Dist: torchdiffeq
|
31 |
+
Requires-Dist: tqdm>=4.65.0
|
32 |
+
Requires-Dist: transformers
|
33 |
+
Requires-Dist: transformers_stream_generator
|
34 |
+
Requires-Dist: vocos
|
35 |
+
Requires-Dist: wandb
|
36 |
+
Requires-Dist: x_transformers>=1.31.14
|
37 |
+
Provides-Extra: eval
|
38 |
+
Requires-Dist: faster_whisper==0.10.1; extra == "eval"
|
39 |
+
Requires-Dist: funasr; extra == "eval"
|
40 |
+
Requires-Dist: jiwer; extra == "eval"
|
41 |
+
Requires-Dist: modelscope; extra == "eval"
|
42 |
+
Requires-Dist: zhconv; extra == "eval"
|
43 |
+
Requires-Dist: zhon; extra == "eval"
|
44 |
+
|
45 |
+
# F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
|
46 |
+
|
47 |
+
[](https://github.com/SWivid/F5-TTS)
|
48 |
+
[](https://arxiv.org/abs/2410.06885)
|
49 |
+
[](https://swivid.github.io/F5-TTS/)
|
50 |
+
[](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
51 |
+
[](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
|
52 |
+
[](https://x-lance.sjtu.edu.cn/)
|
53 |
+
<img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto">
|
54 |
+
|
55 |
+
**F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
|
56 |
+
|
57 |
+
**E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).
|
58 |
+
|
59 |
+
**Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
|
60 |
+
|
61 |
+
### Thanks to all the contributors !
|
62 |
+
|
63 |
+
## News
|
64 |
+
- **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
|
65 |
+
|
66 |
+
## Installation
|
67 |
+
|
68 |
+
```bash
|
69 |
+
# Create a python 3.10 conda env (you could also use virtualenv)
|
70 |
+
conda create -n f5-tts python=3.10
|
71 |
+
conda activate f5-tts
|
72 |
+
|
73 |
+
# Install pytorch with your CUDA version, e.g.
|
74 |
+
pip install torch==2.3.0+cu118 torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
|
75 |
+
```
|
76 |
+
|
77 |
+
Then you can choose from a few options below:
|
78 |
+
|
79 |
+
### 1. As a pip package (if just for inference)
|
80 |
+
|
81 |
+
```bash
|
82 |
+
pip install git+https://github.com/SWivid/F5-TTS.git
|
83 |
+
```
|
84 |
+
|
85 |
+
### 2. Local editable (if also do training, finetuning)
|
86 |
+
|
87 |
+
```bash
|
88 |
+
git clone https://github.com/SWivid/F5-TTS.git
|
89 |
+
cd F5-TTS
|
90 |
+
pip install -e .
|
91 |
+
```
|
92 |
+
|
93 |
+
### 3. Docker usage
|
94 |
+
```bash
|
95 |
+
# Build from Dockerfile
|
96 |
+
docker build -t f5tts:v1 .
|
97 |
+
|
98 |
+
# Or pull from GitHub Container Registry
|
99 |
+
docker pull ghcr.io/swivid/f5-tts:main
|
100 |
+
```
|
101 |
+
|
102 |
+
|
103 |
+
## Inference
|
104 |
+
|
105 |
+
### 1. Gradio App
|
106 |
+
|
107 |
+
Currently supported features:
|
108 |
+
|
109 |
+
- Basic TTS with Chunk Inference
|
110 |
+
- Multi-Style / Multi-Speaker Generation
|
111 |
+
- Voice Chat powered by Qwen2.5-3B-Instruct
|
112 |
+
|
113 |
+
```bash
|
114 |
+
# Launch a Gradio app (web interface)
|
115 |
+
f5-tts_infer-gradio
|
116 |
+
|
117 |
+
# Specify the port/host
|
118 |
+
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
|
119 |
+
|
120 |
+
# Launch a share link
|
121 |
+
f5-tts_infer-gradio --share
|
122 |
+
```
|
123 |
+
|
124 |
+
### 2. CLI Inference
|
125 |
+
|
126 |
+
```bash
|
127 |
+
# Run with flags
|
128 |
+
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
129 |
+
f5-tts_infer-cli \
|
130 |
+
--model "F5-TTS" \
|
131 |
+
--ref_audio "ref_audio.wav" \
|
132 |
+
--ref_text "The content, subtitle or transcription of reference audio." \
|
133 |
+
--gen_text "Some text you want TTS model generate for you."
|
134 |
+
|
135 |
+
# Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
|
136 |
+
f5-tts_infer-cli
|
137 |
+
# Or with your own .toml file
|
138 |
+
f5-tts_infer-cli -c custom.toml
|
139 |
+
|
140 |
+
# Multi voice. See src/f5_tts/infer/README.md
|
141 |
+
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
|
142 |
+
```
|
143 |
+
|
144 |
+
### 3. More instructions
|
145 |
+
|
146 |
+
- In order to have better generation results, take a moment to read [detailed guidance](src/f5_tts/infer).
|
147 |
+
- The [Issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very useful, please try to find the solution by properly searching the keywords of problem encountered. If no answer found, then feel free to open an issue.
|
148 |
+
|
149 |
+
|
150 |
+
## Training
|
151 |
+
|
152 |
+
### 1. Gradio App
|
153 |
+
|
154 |
+
Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
|
155 |
+
|
156 |
+
```bash
|
157 |
+
# Quick start with Gradio web interface
|
158 |
+
f5-tts_finetune-gradio
|
159 |
+
```
|
160 |
+
|
161 |
+
|
162 |
+
## [Evaluation](src/f5_tts/eval)
|
163 |
+
|
164 |
+
|
165 |
+
## Development
|
166 |
+
|
167 |
+
Use pre-commit to ensure code quality (will run linters and formatters automatically)
|
168 |
+
|
169 |
+
```bash
|
170 |
+
pip install pre-commit
|
171 |
+
pre-commit install
|
172 |
+
```
|
173 |
+
|
174 |
+
When making a pull request, before each commit, run:
|
175 |
+
|
176 |
+
```bash
|
177 |
+
pre-commit run --all-files
|
178 |
+
```
|
179 |
+
|
180 |
+
Note: Some model components have linting exceptions for E722 to accommodate tensor notation
|
181 |
+
|
182 |
+
|
183 |
+
## Acknowledgements
|
184 |
+
|
185 |
+
- [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
|
186 |
+
- [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763) valuable datasets
|
187 |
+
- [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
|
188 |
+
- [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
|
189 |
+
- [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) as vocoder
|
190 |
+
- [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech) for evaluation tools
|
191 |
+
- [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
|
192 |
+
- [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
|
193 |
+
- [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
|
194 |
+
- [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
|
195 |
+
|
196 |
+
## Citation
|
197 |
+
If our work and codebase is useful for you, please cite as:
|
198 |
+
```
|
199 |
+
@article{chen-etal-2024-f5tts,
|
200 |
+
title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
|
201 |
+
author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
|
202 |
+
journal={arXiv preprint arXiv:2410.06885},
|
203 |
+
year={2024},
|
204 |
+
}
|
205 |
+
```
|
206 |
+
## License
|
207 |
+
|
208 |
+
Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.
|
src/f5_tts.egg-info/SOURCES.txt
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.gitignore
|
2 |
+
.pre-commit-config.yaml
|
3 |
+
Dockerfile
|
4 |
+
LICENSE
|
5 |
+
README.md
|
6 |
+
pyproject.toml
|
7 |
+
ruff.toml
|
8 |
+
.github/workflows/pre-commit.yaml
|
9 |
+
.github/workflows/publish-docker-image.yaml
|
10 |
+
.github/workflows/sync-hf.yaml
|
11 |
+
ckpts/README.md
|
12 |
+
data/librispeech_pc_test_clean_cross_sentence.lst
|
13 |
+
data/Emilia_ZH_EN_pinyin/vocab.txt
|
14 |
+
src/f5_tts/api.py
|
15 |
+
src/f5_tts.egg-info/PKG-INFO
|
16 |
+
src/f5_tts.egg-info/SOURCES.txt
|
17 |
+
src/f5_tts.egg-info/dependency_links.txt
|
18 |
+
src/f5_tts.egg-info/entry_points.txt
|
19 |
+
src/f5_tts.egg-info/requires.txt
|
20 |
+
src/f5_tts.egg-info/top_level.txt
|
21 |
+
src/f5_tts/eval/README.md
|
22 |
+
src/f5_tts/eval/ecapa_tdnn.py
|
23 |
+
src/f5_tts/eval/eval_infer_batch.py
|
24 |
+
src/f5_tts/eval/eval_infer_batch.sh
|
25 |
+
src/f5_tts/eval/eval_librispeech_test_clean.py
|
26 |
+
src/f5_tts/eval/eval_seedtts_testset.py
|
27 |
+
src/f5_tts/eval/utils_eval.py
|
28 |
+
src/f5_tts/infer/README.md
|
29 |
+
src/f5_tts/infer/infer_cli.py
|
30 |
+
src/f5_tts/infer/infer_gradio.py
|
31 |
+
src/f5_tts/infer/speech_edit.py
|
32 |
+
src/f5_tts/infer/utils_infer.py
|
33 |
+
src/f5_tts/infer/examples/vocab.txt
|
34 |
+
src/f5_tts/infer/examples/basic/basic.toml
|
35 |
+
src/f5_tts/infer/examples/basic/basic_ref_en.wav
|
36 |
+
src/f5_tts/infer/examples/basic/basic_ref_zh.wav
|
37 |
+
src/f5_tts/infer/examples/multi/country.flac
|
38 |
+
src/f5_tts/infer/examples/multi/main.flac
|
39 |
+
src/f5_tts/infer/examples/multi/story.toml
|
40 |
+
src/f5_tts/infer/examples/multi/story.txt
|
41 |
+
src/f5_tts/infer/examples/multi/town.flac
|
42 |
+
src/f5_tts/model/__init__.py
|
43 |
+
src/f5_tts/model/cfm.py
|
44 |
+
src/f5_tts/model/dataset.py
|
45 |
+
src/f5_tts/model/modules.py
|
46 |
+
src/f5_tts/model/trainer.py
|
47 |
+
src/f5_tts/model/utils.py
|
48 |
+
src/f5_tts/model/backbones/README.md
|
49 |
+
src/f5_tts/model/backbones/dit.py
|
50 |
+
src/f5_tts/model/backbones/mmdit.py
|
51 |
+
src/f5_tts/model/backbones/unett.py
|
52 |
+
src/f5_tts/scripts/count_max_epoch.py
|
53 |
+
src/f5_tts/scripts/count_params_gflops.py
|
54 |
+
src/f5_tts/train/README.md
|
55 |
+
src/f5_tts/train/finetune_cli.py
|
56 |
+
src/f5_tts/train/finetune_gradio.py
|
57 |
+
src/f5_tts/train/train.py
|
58 |
+
src/f5_tts/train/datasets/prepare_csv_wavs.py
|
59 |
+
src/f5_tts/train/datasets/prepare_emilia.py
|
60 |
+
src/f5_tts/train/datasets/prepare_wenetspeech4tts.py
|
src/f5_tts.egg-info/dependency_links.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/f5_tts.egg-info/entry_points.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[console_scripts]
|
2 |
+
f5-tts_finetune-cli = f5_tts.train.finetune_cli:main
|
3 |
+
f5-tts_finetune-gradio = f5_tts.train.finetune_gradio:main
|
4 |
+
f5-tts_infer-cli = f5_tts.infer.infer_cli:main
|
5 |
+
f5-tts_infer-gradio = f5_tts.infer.infer_gradio:main
|
src/f5_tts.egg-info/requires.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate>=0.33.0
|
2 |
+
bitsandbytes>0.37.0
|
3 |
+
cached_path
|
4 |
+
click
|
5 |
+
datasets
|
6 |
+
ema_pytorch>=0.5.2
|
7 |
+
gradio>=3.45.2
|
8 |
+
jieba
|
9 |
+
librosa
|
10 |
+
matplotlib
|
11 |
+
numpy<=1.26.4
|
12 |
+
pydub
|
13 |
+
pypinyin
|
14 |
+
safetensors
|
15 |
+
soundfile
|
16 |
+
tomli
|
17 |
+
torch>=2.0.0
|
18 |
+
torchaudio>=2.0.0
|
19 |
+
torchdiffeq
|
20 |
+
tqdm>=4.65.0
|
21 |
+
transformers
|
22 |
+
transformers_stream_generator
|
23 |
+
vocos
|
24 |
+
wandb
|
25 |
+
x_transformers>=1.31.14
|
26 |
+
|
27 |
+
[eval]
|
28 |
+
faster_whisper==0.10.1
|
29 |
+
funasr
|
30 |
+
jiwer
|
31 |
+
modelscope
|
32 |
+
zhconv
|
33 |
+
zhon
|
src/f5_tts.egg-info/top_level.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
f5_tts
|
src/f5_tts/ElevenLabs_2024_10_31T10_14_17_Nicoletta_gen_s50_sb75_se10_b_m2.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:513c11b36a53076548433b6b01cc328742b4885850c20ecd2c11401ffe7ec25f
|
3 |
+
size 1202732
|
src/f5_tts/api.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import sys
|
3 |
+
import tqdm
|
4 |
+
from importlib.resources import files
|
5 |
+
|
6 |
+
import soundfile as sf
|
7 |
+
import torch
|
8 |
+
from cached_path import cached_path
|
9 |
+
|
10 |
+
from f5_tts.model import DiT, UNetT
|
11 |
+
from f5_tts.model.utils import seed_everything
|
12 |
+
from f5_tts.infer.utils_infer import (
|
13 |
+
load_vocoder,
|
14 |
+
load_model,
|
15 |
+
infer_process,
|
16 |
+
remove_silence_for_generated_wav,
|
17 |
+
save_spectrogram,
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
class F5TTS:
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
model_type="F5-TTS",
|
25 |
+
ckpt_file="",
|
26 |
+
vocab_file="",
|
27 |
+
ode_method="euler",
|
28 |
+
use_ema=True,
|
29 |
+
local_path=None,
|
30 |
+
device=None,
|
31 |
+
):
|
32 |
+
# Initialize parameters
|
33 |
+
self.final_wave = None
|
34 |
+
self.target_sample_rate = 24000
|
35 |
+
self.n_mel_channels = 100
|
36 |
+
self.hop_length = 256
|
37 |
+
self.target_rms = 0.1
|
38 |
+
self.seed = -1
|
39 |
+
|
40 |
+
# Set device
|
41 |
+
self.device = device or (
|
42 |
+
"cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
43 |
+
)
|
44 |
+
|
45 |
+
# Load models
|
46 |
+
self.load_vocoder_model(local_path)
|
47 |
+
self.load_ema_model(model_type, ckpt_file, vocab_file, ode_method, use_ema)
|
48 |
+
|
49 |
+
def load_vocoder_model(self, local_path):
|
50 |
+
self.vocos = load_vocoder(local_path is not None, local_path, self.device)
|
51 |
+
|
52 |
+
def load_ema_model(self, model_type, ckpt_file, vocab_file, ode_method, use_ema):
|
53 |
+
if model_type == "F5-TTS":
|
54 |
+
if not ckpt_file:
|
55 |
+
ckpt_file = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
56 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
57 |
+
model_cls = DiT
|
58 |
+
elif model_type == "E2-TTS":
|
59 |
+
if not ckpt_file:
|
60 |
+
ckpt_file = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
61 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
62 |
+
model_cls = UNetT
|
63 |
+
else:
|
64 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
65 |
+
|
66 |
+
self.ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file, ode_method, use_ema, self.device)
|
67 |
+
|
68 |
+
def export_wav(self, wav, file_wave, remove_silence=False):
|
69 |
+
sf.write(file_wave, wav, self.target_sample_rate)
|
70 |
+
|
71 |
+
if remove_silence:
|
72 |
+
remove_silence_for_generated_wav(file_wave)
|
73 |
+
|
74 |
+
def export_spectrogram(self, spect, file_spect):
|
75 |
+
save_spectrogram(spect, file_spect)
|
76 |
+
|
77 |
+
def infer(
|
78 |
+
self,
|
79 |
+
ref_file,
|
80 |
+
ref_text,
|
81 |
+
gen_text,
|
82 |
+
show_info=print,
|
83 |
+
progress=tqdm,
|
84 |
+
target_rms=0.1,
|
85 |
+
cross_fade_duration=0.15,
|
86 |
+
sway_sampling_coef=-1,
|
87 |
+
cfg_strength=2,
|
88 |
+
nfe_step=32,
|
89 |
+
speed=1.0,
|
90 |
+
fix_duration=None,
|
91 |
+
remove_silence=False,
|
92 |
+
file_wave=None,
|
93 |
+
file_spect=None,
|
94 |
+
seed=-1,
|
95 |
+
):
|
96 |
+
if seed == -1:
|
97 |
+
seed = random.randint(0, sys.maxsize)
|
98 |
+
seed_everything(seed)
|
99 |
+
self.seed = seed
|
100 |
+
wav, sr, spect = infer_process(
|
101 |
+
ref_file,
|
102 |
+
ref_text,
|
103 |
+
gen_text,
|
104 |
+
self.ema_model,
|
105 |
+
show_info=show_info,
|
106 |
+
progress=progress,
|
107 |
+
target_rms=target_rms,
|
108 |
+
cross_fade_duration=cross_fade_duration,
|
109 |
+
nfe_step=nfe_step,
|
110 |
+
cfg_strength=cfg_strength,
|
111 |
+
sway_sampling_coef=sway_sampling_coef,
|
112 |
+
speed=speed,
|
113 |
+
fix_duration=fix_duration,
|
114 |
+
device=self.device,
|
115 |
+
)
|
116 |
+
|
117 |
+
if file_wave is not None:
|
118 |
+
self.export_wav(wav, file_wave, remove_silence)
|
119 |
+
|
120 |
+
if file_spect is not None:
|
121 |
+
self.export_spectrogram(spect, file_spect)
|
122 |
+
|
123 |
+
return wav, sr, spect
|
124 |
+
|
125 |
+
|
126 |
+
if __name__ == "__main__":
|
127 |
+
f5tts = F5TTS()
|
128 |
+
|
129 |
+
wav, sr, spect = f5tts.infer(
|
130 |
+
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
131 |
+
ref_text="some call me nature, others call me mother nature.",
|
132 |
+
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
133 |
+
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
134 |
+
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
135 |
+
seed=-1, # random seed = -1
|
136 |
+
)
|
137 |
+
|
138 |
+
print("seed :", f5tts.seed)
|
src/f5_tts/eval/README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Evaluation
|
3 |
+
|
4 |
+
Install packages for evaluation:
|
5 |
+
|
6 |
+
```bash
|
7 |
+
pip install -e .[eval]
|
8 |
+
```
|
9 |
+
|
10 |
+
## Generating Samples for Evaluation
|
11 |
+
|
12 |
+
### Prepare Test Datasets
|
13 |
+
|
14 |
+
1. *Seed-TTS testset*: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
|
15 |
+
2. *LibriSpeech test-clean*: Download from [OpenSLR](http://www.openslr.org/12/).
|
16 |
+
3. Unzip the downloaded datasets and place them in the `data/` directory.
|
17 |
+
4. Update the path for *LibriSpeech test-clean* data in `src/f5_tts/eval/eval_infer_batch.py`
|
18 |
+
5. Our filtered LibriSpeech-PC 4-10s subset: `data/librispeech_pc_test_clean_cross_sentence.lst`
|
19 |
+
|
20 |
+
### Batch Inference for Test Set
|
21 |
+
|
22 |
+
To run batch inference for evaluations, execute the following commands:
|
23 |
+
|
24 |
+
```bash
|
25 |
+
# batch inference for evaluations
|
26 |
+
accelerate config # if not set before
|
27 |
+
bash src/f5_tts/eval/eval_infer_batch.sh
|
28 |
+
```
|
29 |
+
|
30 |
+
## Objective Evaluation on Generated Results
|
31 |
+
|
32 |
+
### Download Evaluation Model Checkpoints
|
33 |
+
|
34 |
+
1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
|
35 |
+
2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
|
36 |
+
3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
|
37 |
+
|
38 |
+
Then update in the following scripts with the paths you put evaluation model ckpts to.
|
39 |
+
|
40 |
+
### Objective Evaluation
|
41 |
+
|
42 |
+
Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
|
43 |
+
```bash
|
44 |
+
# Evaluation for Seed-TTS test set
|
45 |
+
python src/f5_tts/eval/eval_seedtts_testset.py
|
46 |
+
|
47 |
+
# Evaluation for LibriSpeech-PC test-clean (cross-sentence)
|
48 |
+
python src/f5_tts/eval/eval_librispeech_test_clean.py
|
49 |
+
```
|
src/f5_tts/eval/ecapa_tdnn.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# just for speaker similarity evaluation, third-party code
|
2 |
+
|
3 |
+
# From https://github.com/microsoft/UniSpeech/blob/main/downstreams/speaker_verification/models/
|
4 |
+
# part of the code is borrowed from https://github.com/lawlict/ECAPA-TDNN
|
5 |
+
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
|
11 |
+
|
12 |
+
""" Res2Conv1d + BatchNorm1d + ReLU
|
13 |
+
"""
|
14 |
+
|
15 |
+
|
16 |
+
class Res2Conv1dReluBn(nn.Module):
|
17 |
+
"""
|
18 |
+
in_channels == out_channels == channels
|
19 |
+
"""
|
20 |
+
|
21 |
+
def __init__(self, channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True, scale=4):
|
22 |
+
super().__init__()
|
23 |
+
assert channels % scale == 0, "{} % {} != 0".format(channels, scale)
|
24 |
+
self.scale = scale
|
25 |
+
self.width = channels // scale
|
26 |
+
self.nums = scale if scale == 1 else scale - 1
|
27 |
+
|
28 |
+
self.convs = []
|
29 |
+
self.bns = []
|
30 |
+
for i in range(self.nums):
|
31 |
+
self.convs.append(nn.Conv1d(self.width, self.width, kernel_size, stride, padding, dilation, bias=bias))
|
32 |
+
self.bns.append(nn.BatchNorm1d(self.width))
|
33 |
+
self.convs = nn.ModuleList(self.convs)
|
34 |
+
self.bns = nn.ModuleList(self.bns)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
out = []
|
38 |
+
spx = torch.split(x, self.width, 1)
|
39 |
+
for i in range(self.nums):
|
40 |
+
if i == 0:
|
41 |
+
sp = spx[i]
|
42 |
+
else:
|
43 |
+
sp = sp + spx[i]
|
44 |
+
# Order: conv -> relu -> bn
|
45 |
+
sp = self.convs[i](sp)
|
46 |
+
sp = self.bns[i](F.relu(sp))
|
47 |
+
out.append(sp)
|
48 |
+
if self.scale != 1:
|
49 |
+
out.append(spx[self.nums])
|
50 |
+
out = torch.cat(out, dim=1)
|
51 |
+
|
52 |
+
return out
|
53 |
+
|
54 |
+
|
55 |
+
""" Conv1d + BatchNorm1d + ReLU
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
class Conv1dReluBn(nn.Module):
|
60 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, dilation=1, bias=True):
|
61 |
+
super().__init__()
|
62 |
+
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
63 |
+
self.bn = nn.BatchNorm1d(out_channels)
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
return self.bn(F.relu(self.conv(x)))
|
67 |
+
|
68 |
+
|
69 |
+
""" The SE connection of 1D case.
|
70 |
+
"""
|
71 |
+
|
72 |
+
|
73 |
+
class SE_Connect(nn.Module):
|
74 |
+
def __init__(self, channels, se_bottleneck_dim=128):
|
75 |
+
super().__init__()
|
76 |
+
self.linear1 = nn.Linear(channels, se_bottleneck_dim)
|
77 |
+
self.linear2 = nn.Linear(se_bottleneck_dim, channels)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
out = x.mean(dim=2)
|
81 |
+
out = F.relu(self.linear1(out))
|
82 |
+
out = torch.sigmoid(self.linear2(out))
|
83 |
+
out = x * out.unsqueeze(2)
|
84 |
+
|
85 |
+
return out
|
86 |
+
|
87 |
+
|
88 |
+
""" SE-Res2Block of the ECAPA-TDNN architecture.
|
89 |
+
"""
|
90 |
+
|
91 |
+
# def SE_Res2Block(channels, kernel_size, stride, padding, dilation, scale):
|
92 |
+
# return nn.Sequential(
|
93 |
+
# Conv1dReluBn(channels, 512, kernel_size=1, stride=1, padding=0),
|
94 |
+
# Res2Conv1dReluBn(512, kernel_size, stride, padding, dilation, scale=scale),
|
95 |
+
# Conv1dReluBn(512, channels, kernel_size=1, stride=1, padding=0),
|
96 |
+
# SE_Connect(channels)
|
97 |
+
# )
|
98 |
+
|
99 |
+
|
100 |
+
class SE_Res2Block(nn.Module):
|
101 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, dilation, scale, se_bottleneck_dim):
|
102 |
+
super().__init__()
|
103 |
+
self.Conv1dReluBn1 = Conv1dReluBn(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
104 |
+
self.Res2Conv1dReluBn = Res2Conv1dReluBn(out_channels, kernel_size, stride, padding, dilation, scale=scale)
|
105 |
+
self.Conv1dReluBn2 = Conv1dReluBn(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
106 |
+
self.SE_Connect = SE_Connect(out_channels, se_bottleneck_dim)
|
107 |
+
|
108 |
+
self.shortcut = None
|
109 |
+
if in_channels != out_channels:
|
110 |
+
self.shortcut = nn.Conv1d(
|
111 |
+
in_channels=in_channels,
|
112 |
+
out_channels=out_channels,
|
113 |
+
kernel_size=1,
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
residual = x
|
118 |
+
if self.shortcut:
|
119 |
+
residual = self.shortcut(x)
|
120 |
+
|
121 |
+
x = self.Conv1dReluBn1(x)
|
122 |
+
x = self.Res2Conv1dReluBn(x)
|
123 |
+
x = self.Conv1dReluBn2(x)
|
124 |
+
x = self.SE_Connect(x)
|
125 |
+
|
126 |
+
return x + residual
|
127 |
+
|
128 |
+
|
129 |
+
""" Attentive weighted mean and standard deviation pooling.
|
130 |
+
"""
|
131 |
+
|
132 |
+
|
133 |
+
class AttentiveStatsPool(nn.Module):
|
134 |
+
def __init__(self, in_dim, attention_channels=128, global_context_att=False):
|
135 |
+
super().__init__()
|
136 |
+
self.global_context_att = global_context_att
|
137 |
+
|
138 |
+
# Use Conv1d with stride == 1 rather than Linear, then we don't need to transpose inputs.
|
139 |
+
if global_context_att:
|
140 |
+
self.linear1 = nn.Conv1d(in_dim * 3, attention_channels, kernel_size=1) # equals W and b in the paper
|
141 |
+
else:
|
142 |
+
self.linear1 = nn.Conv1d(in_dim, attention_channels, kernel_size=1) # equals W and b in the paper
|
143 |
+
self.linear2 = nn.Conv1d(attention_channels, in_dim, kernel_size=1) # equals V and k in the paper
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
if self.global_context_att:
|
147 |
+
context_mean = torch.mean(x, dim=-1, keepdim=True).expand_as(x)
|
148 |
+
context_std = torch.sqrt(torch.var(x, dim=-1, keepdim=True) + 1e-10).expand_as(x)
|
149 |
+
x_in = torch.cat((x, context_mean, context_std), dim=1)
|
150 |
+
else:
|
151 |
+
x_in = x
|
152 |
+
|
153 |
+
# DON'T use ReLU here! In experiments, I find ReLU hard to converge.
|
154 |
+
alpha = torch.tanh(self.linear1(x_in))
|
155 |
+
# alpha = F.relu(self.linear1(x_in))
|
156 |
+
alpha = torch.softmax(self.linear2(alpha), dim=2)
|
157 |
+
mean = torch.sum(alpha * x, dim=2)
|
158 |
+
residuals = torch.sum(alpha * (x**2), dim=2) - mean**2
|
159 |
+
std = torch.sqrt(residuals.clamp(min=1e-9))
|
160 |
+
return torch.cat([mean, std], dim=1)
|
161 |
+
|
162 |
+
|
163 |
+
class ECAPA_TDNN(nn.Module):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
feat_dim=80,
|
167 |
+
channels=512,
|
168 |
+
emb_dim=192,
|
169 |
+
global_context_att=False,
|
170 |
+
feat_type="wavlm_large",
|
171 |
+
sr=16000,
|
172 |
+
feature_selection="hidden_states",
|
173 |
+
update_extract=False,
|
174 |
+
config_path=None,
|
175 |
+
):
|
176 |
+
super().__init__()
|
177 |
+
|
178 |
+
self.feat_type = feat_type
|
179 |
+
self.feature_selection = feature_selection
|
180 |
+
self.update_extract = update_extract
|
181 |
+
self.sr = sr
|
182 |
+
|
183 |
+
torch.hub._validate_not_a_forked_repo = lambda a, b, c: True
|
184 |
+
try:
|
185 |
+
local_s3prl_path = os.path.expanduser("~/.cache/torch/hub/s3prl_s3prl_main")
|
186 |
+
self.feature_extract = torch.hub.load(local_s3prl_path, feat_type, source="local", config_path=config_path)
|
187 |
+
except: # noqa: E722
|
188 |
+
self.feature_extract = torch.hub.load("s3prl/s3prl", feat_type)
|
189 |
+
|
190 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
191 |
+
self.feature_extract.model.encoder.layers[23].self_attn, "fp32_attention"
|
192 |
+
):
|
193 |
+
self.feature_extract.model.encoder.layers[23].self_attn.fp32_attention = False
|
194 |
+
if len(self.feature_extract.model.encoder.layers) == 24 and hasattr(
|
195 |
+
self.feature_extract.model.encoder.layers[11].self_attn, "fp32_attention"
|
196 |
+
):
|
197 |
+
self.feature_extract.model.encoder.layers[11].self_attn.fp32_attention = False
|
198 |
+
|
199 |
+
self.feat_num = self.get_feat_num()
|
200 |
+
self.feature_weight = nn.Parameter(torch.zeros(self.feat_num))
|
201 |
+
|
202 |
+
if feat_type != "fbank" and feat_type != "mfcc":
|
203 |
+
freeze_list = ["final_proj", "label_embs_concat", "mask_emb", "project_q", "quantizer"]
|
204 |
+
for name, param in self.feature_extract.named_parameters():
|
205 |
+
for freeze_val in freeze_list:
|
206 |
+
if freeze_val in name:
|
207 |
+
param.requires_grad = False
|
208 |
+
break
|
209 |
+
|
210 |
+
if not self.update_extract:
|
211 |
+
for param in self.feature_extract.parameters():
|
212 |
+
param.requires_grad = False
|
213 |
+
|
214 |
+
self.instance_norm = nn.InstanceNorm1d(feat_dim)
|
215 |
+
# self.channels = [channels] * 4 + [channels * 3]
|
216 |
+
self.channels = [channels] * 4 + [1536]
|
217 |
+
|
218 |
+
self.layer1 = Conv1dReluBn(feat_dim, self.channels[0], kernel_size=5, padding=2)
|
219 |
+
self.layer2 = SE_Res2Block(
|
220 |
+
self.channels[0],
|
221 |
+
self.channels[1],
|
222 |
+
kernel_size=3,
|
223 |
+
stride=1,
|
224 |
+
padding=2,
|
225 |
+
dilation=2,
|
226 |
+
scale=8,
|
227 |
+
se_bottleneck_dim=128,
|
228 |
+
)
|
229 |
+
self.layer3 = SE_Res2Block(
|
230 |
+
self.channels[1],
|
231 |
+
self.channels[2],
|
232 |
+
kernel_size=3,
|
233 |
+
stride=1,
|
234 |
+
padding=3,
|
235 |
+
dilation=3,
|
236 |
+
scale=8,
|
237 |
+
se_bottleneck_dim=128,
|
238 |
+
)
|
239 |
+
self.layer4 = SE_Res2Block(
|
240 |
+
self.channels[2],
|
241 |
+
self.channels[3],
|
242 |
+
kernel_size=3,
|
243 |
+
stride=1,
|
244 |
+
padding=4,
|
245 |
+
dilation=4,
|
246 |
+
scale=8,
|
247 |
+
se_bottleneck_dim=128,
|
248 |
+
)
|
249 |
+
|
250 |
+
# self.conv = nn.Conv1d(self.channels[-1], self.channels[-1], kernel_size=1)
|
251 |
+
cat_channels = channels * 3
|
252 |
+
self.conv = nn.Conv1d(cat_channels, self.channels[-1], kernel_size=1)
|
253 |
+
self.pooling = AttentiveStatsPool(
|
254 |
+
self.channels[-1], attention_channels=128, global_context_att=global_context_att
|
255 |
+
)
|
256 |
+
self.bn = nn.BatchNorm1d(self.channels[-1] * 2)
|
257 |
+
self.linear = nn.Linear(self.channels[-1] * 2, emb_dim)
|
258 |
+
|
259 |
+
def get_feat_num(self):
|
260 |
+
self.feature_extract.eval()
|
261 |
+
wav = [torch.randn(self.sr).to(next(self.feature_extract.parameters()).device)]
|
262 |
+
with torch.no_grad():
|
263 |
+
features = self.feature_extract(wav)
|
264 |
+
select_feature = features[self.feature_selection]
|
265 |
+
if isinstance(select_feature, (list, tuple)):
|
266 |
+
return len(select_feature)
|
267 |
+
else:
|
268 |
+
return 1
|
269 |
+
|
270 |
+
def get_feat(self, x):
|
271 |
+
if self.update_extract:
|
272 |
+
x = self.feature_extract([sample for sample in x])
|
273 |
+
else:
|
274 |
+
with torch.no_grad():
|
275 |
+
if self.feat_type == "fbank" or self.feat_type == "mfcc":
|
276 |
+
x = self.feature_extract(x) + 1e-6 # B x feat_dim x time_len
|
277 |
+
else:
|
278 |
+
x = self.feature_extract([sample for sample in x])
|
279 |
+
|
280 |
+
if self.feat_type == "fbank":
|
281 |
+
x = x.log()
|
282 |
+
|
283 |
+
if self.feat_type != "fbank" and self.feat_type != "mfcc":
|
284 |
+
x = x[self.feature_selection]
|
285 |
+
if isinstance(x, (list, tuple)):
|
286 |
+
x = torch.stack(x, dim=0)
|
287 |
+
else:
|
288 |
+
x = x.unsqueeze(0)
|
289 |
+
norm_weights = F.softmax(self.feature_weight, dim=-1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
|
290 |
+
x = (norm_weights * x).sum(dim=0)
|
291 |
+
x = torch.transpose(x, 1, 2) + 1e-6
|
292 |
+
|
293 |
+
x = self.instance_norm(x)
|
294 |
+
return x
|
295 |
+
|
296 |
+
def forward(self, x):
|
297 |
+
x = self.get_feat(x)
|
298 |
+
|
299 |
+
out1 = self.layer1(x)
|
300 |
+
out2 = self.layer2(out1)
|
301 |
+
out3 = self.layer3(out2)
|
302 |
+
out4 = self.layer4(out3)
|
303 |
+
|
304 |
+
out = torch.cat([out2, out3, out4], dim=1)
|
305 |
+
out = F.relu(self.conv(out))
|
306 |
+
out = self.bn(self.pooling(out))
|
307 |
+
out = self.linear(out)
|
308 |
+
|
309 |
+
return out
|
310 |
+
|
311 |
+
|
312 |
+
def ECAPA_TDNN_SMALL(
|
313 |
+
feat_dim,
|
314 |
+
emb_dim=256,
|
315 |
+
feat_type="wavlm_large",
|
316 |
+
sr=16000,
|
317 |
+
feature_selection="hidden_states",
|
318 |
+
update_extract=False,
|
319 |
+
config_path=None,
|
320 |
+
):
|
321 |
+
return ECAPA_TDNN(
|
322 |
+
feat_dim=feat_dim,
|
323 |
+
channels=512,
|
324 |
+
emb_dim=emb_dim,
|
325 |
+
feat_type=feat_type,
|
326 |
+
sr=sr,
|
327 |
+
feature_selection=feature_selection,
|
328 |
+
update_extract=update_extract,
|
329 |
+
config_path=config_path,
|
330 |
+
)
|
src/f5_tts/eval/eval_infer_batch.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
|
4 |
+
sys.path.append(os.getcwd())
|
5 |
+
|
6 |
+
import time
|
7 |
+
from tqdm import tqdm
|
8 |
+
import argparse
|
9 |
+
from importlib.resources import files
|
10 |
+
|
11 |
+
import torch
|
12 |
+
import torchaudio
|
13 |
+
from accelerate import Accelerator
|
14 |
+
from vocos import Vocos
|
15 |
+
|
16 |
+
from f5_tts.model import CFM, UNetT, DiT
|
17 |
+
from f5_tts.model.utils import get_tokenizer
|
18 |
+
from f5_tts.infer.utils_infer import load_checkpoint
|
19 |
+
from f5_tts.eval.utils_eval import (
|
20 |
+
get_seedtts_testset_metainfo,
|
21 |
+
get_librispeech_test_clean_metainfo,
|
22 |
+
get_inference_prompt,
|
23 |
+
)
|
24 |
+
|
25 |
+
accelerator = Accelerator()
|
26 |
+
device = f"cuda:{accelerator.process_index}"
|
27 |
+
|
28 |
+
|
29 |
+
# --------------------- Dataset Settings -------------------- #
|
30 |
+
|
31 |
+
target_sample_rate = 24000
|
32 |
+
n_mel_channels = 100
|
33 |
+
hop_length = 256
|
34 |
+
target_rms = 0.1
|
35 |
+
|
36 |
+
tokenizer = "pinyin"
|
37 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
# ---------------------- infer setting ---------------------- #
|
42 |
+
|
43 |
+
parser = argparse.ArgumentParser(description="batch inference")
|
44 |
+
|
45 |
+
parser.add_argument("-s", "--seed", default=None, type=int)
|
46 |
+
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
|
47 |
+
parser.add_argument("-n", "--expname", required=True)
|
48 |
+
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
|
49 |
+
|
50 |
+
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
51 |
+
parser.add_argument("-o", "--odemethod", default="euler")
|
52 |
+
parser.add_argument("-ss", "--swaysampling", default=-1, type=float)
|
53 |
+
|
54 |
+
parser.add_argument("-t", "--testset", required=True)
|
55 |
+
|
56 |
+
args = parser.parse_args()
|
57 |
+
|
58 |
+
seed = args.seed
|
59 |
+
dataset_name = args.dataset
|
60 |
+
exp_name = args.expname
|
61 |
+
ckpt_step = args.ckptstep
|
62 |
+
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
63 |
+
|
64 |
+
nfe_step = args.nfestep
|
65 |
+
ode_method = args.odemethod
|
66 |
+
sway_sampling_coef = args.swaysampling
|
67 |
+
|
68 |
+
testset = args.testset
|
69 |
+
|
70 |
+
infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
|
71 |
+
cfg_strength = 2.0
|
72 |
+
speed = 1.0
|
73 |
+
use_truth_duration = False
|
74 |
+
no_ref_audio = False
|
75 |
+
|
76 |
+
if exp_name == "F5TTS_Base":
|
77 |
+
model_cls = DiT
|
78 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
79 |
+
|
80 |
+
elif exp_name == "E2TTS_Base":
|
81 |
+
model_cls = UNetT
|
82 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
83 |
+
|
84 |
+
if testset == "ls_pc_test_clean":
|
85 |
+
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
86 |
+
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
87 |
+
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
|
88 |
+
|
89 |
+
elif testset == "seedtts_test_zh":
|
90 |
+
metalst = rel_path + "/data/seedtts_testset/zh/meta.lst"
|
91 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
92 |
+
|
93 |
+
elif testset == "seedtts_test_en":
|
94 |
+
metalst = rel_path + "/data/seedtts_testset/en/meta.lst"
|
95 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
96 |
+
|
97 |
+
# path to save genereted wavs
|
98 |
+
output_dir = (
|
99 |
+
f"{rel_path}/"
|
100 |
+
f"results/{exp_name}_{ckpt_step}/{testset}/"
|
101 |
+
f"seed{seed}_{ode_method}_nfe{nfe_step}"
|
102 |
+
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}"
|
103 |
+
f"_cfg{cfg_strength}_speed{speed}"
|
104 |
+
f"{'_gt-dur' if use_truth_duration else ''}"
|
105 |
+
f"{'_no-ref-audio' if no_ref_audio else ''}"
|
106 |
+
)
|
107 |
+
|
108 |
+
# -------------------------------------------------#
|
109 |
+
|
110 |
+
use_ema = True
|
111 |
+
|
112 |
+
prompts_all = get_inference_prompt(
|
113 |
+
metainfo,
|
114 |
+
speed=speed,
|
115 |
+
tokenizer=tokenizer,
|
116 |
+
target_sample_rate=target_sample_rate,
|
117 |
+
n_mel_channels=n_mel_channels,
|
118 |
+
hop_length=hop_length,
|
119 |
+
target_rms=target_rms,
|
120 |
+
use_truth_duration=use_truth_duration,
|
121 |
+
infer_batch_size=infer_batch_size,
|
122 |
+
)
|
123 |
+
|
124 |
+
# Vocoder model
|
125 |
+
local = False
|
126 |
+
if local:
|
127 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
128 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
129 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
|
130 |
+
vocos.load_state_dict(state_dict)
|
131 |
+
vocos.eval()
|
132 |
+
else:
|
133 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
134 |
+
|
135 |
+
# Tokenizer
|
136 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
137 |
+
|
138 |
+
# Model
|
139 |
+
model = CFM(
|
140 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
141 |
+
mel_spec_kwargs=dict(
|
142 |
+
target_sample_rate=target_sample_rate,
|
143 |
+
n_mel_channels=n_mel_channels,
|
144 |
+
hop_length=hop_length,
|
145 |
+
),
|
146 |
+
odeint_kwargs=dict(
|
147 |
+
method=ode_method,
|
148 |
+
),
|
149 |
+
vocab_char_map=vocab_char_map,
|
150 |
+
).to(device)
|
151 |
+
|
152 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
|
153 |
+
|
154 |
+
if not os.path.exists(output_dir) and accelerator.is_main_process:
|
155 |
+
os.makedirs(output_dir)
|
156 |
+
|
157 |
+
# start batch inference
|
158 |
+
accelerator.wait_for_everyone()
|
159 |
+
start = time.time()
|
160 |
+
|
161 |
+
with accelerator.split_between_processes(prompts_all) as prompts:
|
162 |
+
for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
|
163 |
+
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
|
164 |
+
ref_mels = ref_mels.to(device)
|
165 |
+
ref_mel_lens = torch.tensor(ref_mel_lens, dtype=torch.long).to(device)
|
166 |
+
total_mel_lens = torch.tensor(total_mel_lens, dtype=torch.long).to(device)
|
167 |
+
|
168 |
+
# Inference
|
169 |
+
with torch.inference_mode():
|
170 |
+
generated, _ = model.sample(
|
171 |
+
cond=ref_mels,
|
172 |
+
text=final_text_list,
|
173 |
+
duration=total_mel_lens,
|
174 |
+
lens=ref_mel_lens,
|
175 |
+
steps=nfe_step,
|
176 |
+
cfg_strength=cfg_strength,
|
177 |
+
sway_sampling_coef=sway_sampling_coef,
|
178 |
+
no_ref_audio=no_ref_audio,
|
179 |
+
seed=seed,
|
180 |
+
)
|
181 |
+
# Final result
|
182 |
+
for i, gen in enumerate(generated):
|
183 |
+
gen = gen[ref_mel_lens[i] : total_mel_lens[i], :].unsqueeze(0)
|
184 |
+
gen_mel_spec = gen.permute(0, 2, 1)
|
185 |
+
generated_wave = vocos.decode(gen_mel_spec.cpu())
|
186 |
+
if ref_rms_list[i] < target_rms:
|
187 |
+
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
188 |
+
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
|
189 |
+
|
190 |
+
accelerator.wait_for_everyone()
|
191 |
+
if accelerator.is_main_process:
|
192 |
+
timediff = time.time() - start
|
193 |
+
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
|
194 |
+
|
195 |
+
|
196 |
+
if __name__ == "__main__":
|
197 |
+
main()
|
src/f5_tts/eval/eval_infer_batch.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# e.g. F5-TTS, 16 NFE
|
4 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
+
|
8 |
+
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
12 |
+
|
13 |
+
# etc.
|
src/f5_tts/eval/eval_librispeech_test_clean.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Evaluate with Librispeech test-clean, ~3s prompt to generate 4-10s audio (the way of valle/voicebox evaluation)
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
|
6 |
+
sys.path.append(os.getcwd())
|
7 |
+
|
8 |
+
import multiprocessing as mp
|
9 |
+
from importlib.resources import files
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from f5_tts.eval.utils_eval import (
|
14 |
+
get_librispeech_test,
|
15 |
+
run_asr_wer,
|
16 |
+
run_sim,
|
17 |
+
)
|
18 |
+
|
19 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
+
|
21 |
+
|
22 |
+
eval_task = "wer" # sim | wer
|
23 |
+
lang = "en"
|
24 |
+
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
25 |
+
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
26 |
+
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
27 |
+
|
28 |
+
gpus = [0, 1, 2, 3, 4, 5, 6, 7]
|
29 |
+
test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path)
|
30 |
+
|
31 |
+
## In LibriSpeech, some speakers utilized varying voice characteristics for different characters in the book,
|
32 |
+
## leading to a low similarity for the ground truth in some cases.
|
33 |
+
# test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth = True) # eval ground truth
|
34 |
+
|
35 |
+
local = False
|
36 |
+
if local: # use local custom checkpoint dir
|
37 |
+
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
|
38 |
+
else:
|
39 |
+
asr_ckpt_dir = "" # auto download to cache dir
|
40 |
+
|
41 |
+
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
42 |
+
|
43 |
+
|
44 |
+
# --------------------------- WER ---------------------------
|
45 |
+
|
46 |
+
if eval_task == "wer":
|
47 |
+
wers = []
|
48 |
+
|
49 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
50 |
+
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
51 |
+
results = pool.map(run_asr_wer, args)
|
52 |
+
for wers_ in results:
|
53 |
+
wers.extend(wers_)
|
54 |
+
|
55 |
+
wer = round(np.mean(wers) * 100, 3)
|
56 |
+
print(f"\nTotal {len(wers)} samples")
|
57 |
+
print(f"WER : {wer}%")
|
58 |
+
|
59 |
+
|
60 |
+
# --------------------------- SIM ---------------------------
|
61 |
+
|
62 |
+
if eval_task == "sim":
|
63 |
+
sim_list = []
|
64 |
+
|
65 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
66 |
+
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
67 |
+
results = pool.map(run_sim, args)
|
68 |
+
for sim_ in results:
|
69 |
+
sim_list.extend(sim_)
|
70 |
+
|
71 |
+
sim = round(sum(sim_list) / len(sim_list), 3)
|
72 |
+
print(f"\nTotal {len(sim_list)} samples")
|
73 |
+
print(f"SIM : {sim}")
|
src/f5_tts/eval/eval_seedtts_testset.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Evaluate with Seed-TTS testset
|
2 |
+
|
3 |
+
import sys
|
4 |
+
import os
|
5 |
+
|
6 |
+
sys.path.append(os.getcwd())
|
7 |
+
|
8 |
+
import multiprocessing as mp
|
9 |
+
from importlib.resources import files
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from f5_tts.eval.utils_eval import (
|
14 |
+
get_seed_tts_test,
|
15 |
+
run_asr_wer,
|
16 |
+
run_sim,
|
17 |
+
)
|
18 |
+
|
19 |
+
rel_path = str(files("f5_tts").joinpath("../../"))
|
20 |
+
|
21 |
+
|
22 |
+
eval_task = "wer" # sim | wer
|
23 |
+
lang = "zh" # zh | en
|
24 |
+
metalst = rel_path + f"/data/seedtts_testset/{lang}/meta.lst" # seed-tts testset
|
25 |
+
# gen_wav_dir = rel_path + f"/data/seedtts_testset/{lang}/wavs" # ground truth wavs
|
26 |
+
gen_wav_dir = "PATH_TO_GENERATED" # generated wavs
|
27 |
+
|
28 |
+
|
29 |
+
# NOTE. paraformer-zh result will be slightly different according to the number of gpus, cuz batchsize is different
|
30 |
+
# zh 1.254 seems a result of 4 workers wer_seed_tts
|
31 |
+
gpus = [0, 1, 2, 3, 4, 5, 6, 7]
|
32 |
+
test_set = get_seed_tts_test(metalst, gen_wav_dir, gpus)
|
33 |
+
|
34 |
+
local = False
|
35 |
+
if local: # use local custom checkpoint dir
|
36 |
+
if lang == "zh":
|
37 |
+
asr_ckpt_dir = "../checkpoints/funasr" # paraformer-zh dir under funasr
|
38 |
+
elif lang == "en":
|
39 |
+
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3"
|
40 |
+
else:
|
41 |
+
asr_ckpt_dir = "" # auto download to cache dir
|
42 |
+
|
43 |
+
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
44 |
+
|
45 |
+
|
46 |
+
# --------------------------- WER ---------------------------
|
47 |
+
|
48 |
+
if eval_task == "wer":
|
49 |
+
wers = []
|
50 |
+
|
51 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
52 |
+
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
53 |
+
results = pool.map(run_asr_wer, args)
|
54 |
+
for wers_ in results:
|
55 |
+
wers.extend(wers_)
|
56 |
+
|
57 |
+
wer = round(np.mean(wers) * 100, 3)
|
58 |
+
print(f"\nTotal {len(wers)} samples")
|
59 |
+
print(f"WER : {wer}%")
|
60 |
+
|
61 |
+
|
62 |
+
# --------------------------- SIM ---------------------------
|
63 |
+
|
64 |
+
if eval_task == "sim":
|
65 |
+
sim_list = []
|
66 |
+
|
67 |
+
with mp.Pool(processes=len(gpus)) as pool:
|
68 |
+
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
69 |
+
results = pool.map(run_sim, args)
|
70 |
+
for sim_ in results:
|
71 |
+
sim_list.extend(sim_)
|
72 |
+
|
73 |
+
sim = round(sum(sim_list) / len(sim_list), 3)
|
74 |
+
print(f"\nTotal {len(sim_list)} samples")
|
75 |
+
print(f"SIM : {sim}")
|
src/f5_tts/eval/utils_eval.py
ADDED
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import string
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torchaudio
|
10 |
+
|
11 |
+
from f5_tts.model.modules import MelSpec
|
12 |
+
from f5_tts.model.utils import convert_char_to_pinyin
|
13 |
+
from f5_tts.eval.ecapa_tdnn import ECAPA_TDNN_SMALL
|
14 |
+
|
15 |
+
|
16 |
+
# seedtts testset metainfo: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
17 |
+
def get_seedtts_testset_metainfo(metalst):
|
18 |
+
f = open(metalst)
|
19 |
+
lines = f.readlines()
|
20 |
+
f.close()
|
21 |
+
metainfo = []
|
22 |
+
for line in lines:
|
23 |
+
if len(line.strip().split("|")) == 5:
|
24 |
+
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
25 |
+
elif len(line.strip().split("|")) == 4:
|
26 |
+
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
27 |
+
gt_wav = os.path.join(os.path.dirname(metalst), "wavs", utt + ".wav")
|
28 |
+
if not os.path.isabs(prompt_wav):
|
29 |
+
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
30 |
+
metainfo.append((utt, prompt_text, prompt_wav, gt_text, gt_wav))
|
31 |
+
return metainfo
|
32 |
+
|
33 |
+
|
34 |
+
# librispeech test-clean metainfo: gen_utt, ref_txt, ref_wav, gen_txt, gen_wav
|
35 |
+
def get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path):
|
36 |
+
f = open(metalst)
|
37 |
+
lines = f.readlines()
|
38 |
+
f.close()
|
39 |
+
metainfo = []
|
40 |
+
for line in lines:
|
41 |
+
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
42 |
+
|
43 |
+
# ref_txt = ref_txt[0] + ref_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
44 |
+
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
45 |
+
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
46 |
+
|
47 |
+
# gen_txt = gen_txt[0] + gen_txt[1:].lower() + '.' # if use librispeech test-clean (no-pc)
|
48 |
+
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
49 |
+
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
50 |
+
|
51 |
+
metainfo.append((gen_utt, ref_txt, ref_wav, " " + gen_txt, gen_wav))
|
52 |
+
|
53 |
+
return metainfo
|
54 |
+
|
55 |
+
|
56 |
+
# padded to max length mel batch
|
57 |
+
def padded_mel_batch(ref_mels):
|
58 |
+
max_mel_length = torch.LongTensor([mel.shape[-1] for mel in ref_mels]).amax()
|
59 |
+
padded_ref_mels = []
|
60 |
+
for mel in ref_mels:
|
61 |
+
padded_ref_mel = F.pad(mel, (0, max_mel_length - mel.shape[-1]), value=0)
|
62 |
+
padded_ref_mels.append(padded_ref_mel)
|
63 |
+
padded_ref_mels = torch.stack(padded_ref_mels)
|
64 |
+
padded_ref_mels = padded_ref_mels.permute(0, 2, 1)
|
65 |
+
return padded_ref_mels
|
66 |
+
|
67 |
+
|
68 |
+
# get prompts from metainfo containing: utt, prompt_text, prompt_wav, gt_text, gt_wav
|
69 |
+
|
70 |
+
|
71 |
+
def get_inference_prompt(
|
72 |
+
metainfo,
|
73 |
+
speed=1.0,
|
74 |
+
tokenizer="pinyin",
|
75 |
+
polyphone=True,
|
76 |
+
target_sample_rate=24000,
|
77 |
+
n_mel_channels=100,
|
78 |
+
hop_length=256,
|
79 |
+
target_rms=0.1,
|
80 |
+
use_truth_duration=False,
|
81 |
+
infer_batch_size=1,
|
82 |
+
num_buckets=200,
|
83 |
+
min_secs=3,
|
84 |
+
max_secs=40,
|
85 |
+
):
|
86 |
+
prompts_all = []
|
87 |
+
|
88 |
+
min_tokens = min_secs * target_sample_rate // hop_length
|
89 |
+
max_tokens = max_secs * target_sample_rate // hop_length
|
90 |
+
|
91 |
+
batch_accum = [0] * num_buckets
|
92 |
+
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = (
|
93 |
+
[[] for _ in range(num_buckets)] for _ in range(6)
|
94 |
+
)
|
95 |
+
|
96 |
+
mel_spectrogram = MelSpec(
|
97 |
+
target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
|
98 |
+
)
|
99 |
+
|
100 |
+
for utt, prompt_text, prompt_wav, gt_text, gt_wav in tqdm(metainfo, desc="Processing prompts..."):
|
101 |
+
# Audio
|
102 |
+
ref_audio, ref_sr = torchaudio.load(prompt_wav)
|
103 |
+
ref_rms = torch.sqrt(torch.mean(torch.square(ref_audio)))
|
104 |
+
if ref_rms < target_rms:
|
105 |
+
ref_audio = ref_audio * target_rms / ref_rms
|
106 |
+
assert ref_audio.shape[-1] > 5000, f"Empty prompt wav: {prompt_wav}, or torchaudio backend issue."
|
107 |
+
if ref_sr != target_sample_rate:
|
108 |
+
resampler = torchaudio.transforms.Resample(ref_sr, target_sample_rate)
|
109 |
+
ref_audio = resampler(ref_audio)
|
110 |
+
|
111 |
+
# Text
|
112 |
+
if len(prompt_text[-1].encode("utf-8")) == 1:
|
113 |
+
prompt_text = prompt_text + " "
|
114 |
+
text = [prompt_text + gt_text]
|
115 |
+
if tokenizer == "pinyin":
|
116 |
+
text_list = convert_char_to_pinyin(text, polyphone=polyphone)
|
117 |
+
else:
|
118 |
+
text_list = text
|
119 |
+
|
120 |
+
# Duration, mel frame length
|
121 |
+
ref_mel_len = ref_audio.shape[-1] // hop_length
|
122 |
+
if use_truth_duration:
|
123 |
+
gt_audio, gt_sr = torchaudio.load(gt_wav)
|
124 |
+
if gt_sr != target_sample_rate:
|
125 |
+
resampler = torchaudio.transforms.Resample(gt_sr, target_sample_rate)
|
126 |
+
gt_audio = resampler(gt_audio)
|
127 |
+
total_mel_len = ref_mel_len + int(gt_audio.shape[-1] / hop_length / speed)
|
128 |
+
|
129 |
+
# # test vocoder resynthesis
|
130 |
+
# ref_audio = gt_audio
|
131 |
+
else:
|
132 |
+
ref_text_len = len(prompt_text.encode("utf-8"))
|
133 |
+
gen_text_len = len(gt_text.encode("utf-8"))
|
134 |
+
total_mel_len = ref_mel_len + int(ref_mel_len / ref_text_len * gen_text_len / speed)
|
135 |
+
|
136 |
+
# to mel spectrogram
|
137 |
+
ref_mel = mel_spectrogram(ref_audio)
|
138 |
+
ref_mel = ref_mel.squeeze(0)
|
139 |
+
|
140 |
+
# deal with batch
|
141 |
+
assert infer_batch_size > 0, "infer_batch_size should be greater than 0."
|
142 |
+
assert (
|
143 |
+
min_tokens <= total_mel_len <= max_tokens
|
144 |
+
), f"Audio {utt} has duration {total_mel_len*hop_length//target_sample_rate}s out of range [{min_secs}, {max_secs}]."
|
145 |
+
bucket_i = math.floor((total_mel_len - min_tokens) / (max_tokens - min_tokens + 1) * num_buckets)
|
146 |
+
|
147 |
+
utts[bucket_i].append(utt)
|
148 |
+
ref_rms_list[bucket_i].append(ref_rms)
|
149 |
+
ref_mels[bucket_i].append(ref_mel)
|
150 |
+
ref_mel_lens[bucket_i].append(ref_mel_len)
|
151 |
+
total_mel_lens[bucket_i].append(total_mel_len)
|
152 |
+
final_text_list[bucket_i].extend(text_list)
|
153 |
+
|
154 |
+
batch_accum[bucket_i] += total_mel_len
|
155 |
+
|
156 |
+
if batch_accum[bucket_i] >= infer_batch_size:
|
157 |
+
# print(f"\n{len(ref_mels[bucket_i][0][0])}\n{ref_mel_lens[bucket_i]}\n{total_mel_lens[bucket_i]}")
|
158 |
+
prompts_all.append(
|
159 |
+
(
|
160 |
+
utts[bucket_i],
|
161 |
+
ref_rms_list[bucket_i],
|
162 |
+
padded_mel_batch(ref_mels[bucket_i]),
|
163 |
+
ref_mel_lens[bucket_i],
|
164 |
+
total_mel_lens[bucket_i],
|
165 |
+
final_text_list[bucket_i],
|
166 |
+
)
|
167 |
+
)
|
168 |
+
batch_accum[bucket_i] = 0
|
169 |
+
(
|
170 |
+
utts[bucket_i],
|
171 |
+
ref_rms_list[bucket_i],
|
172 |
+
ref_mels[bucket_i],
|
173 |
+
ref_mel_lens[bucket_i],
|
174 |
+
total_mel_lens[bucket_i],
|
175 |
+
final_text_list[bucket_i],
|
176 |
+
) = [], [], [], [], [], []
|
177 |
+
|
178 |
+
# add residual
|
179 |
+
for bucket_i, bucket_frames in enumerate(batch_accum):
|
180 |
+
if bucket_frames > 0:
|
181 |
+
prompts_all.append(
|
182 |
+
(
|
183 |
+
utts[bucket_i],
|
184 |
+
ref_rms_list[bucket_i],
|
185 |
+
padded_mel_batch(ref_mels[bucket_i]),
|
186 |
+
ref_mel_lens[bucket_i],
|
187 |
+
total_mel_lens[bucket_i],
|
188 |
+
final_text_list[bucket_i],
|
189 |
+
)
|
190 |
+
)
|
191 |
+
# not only leave easy work for last workers
|
192 |
+
random.seed(666)
|
193 |
+
random.shuffle(prompts_all)
|
194 |
+
|
195 |
+
return prompts_all
|
196 |
+
|
197 |
+
|
198 |
+
# get wav_res_ref_text of seed-tts test metalst
|
199 |
+
# https://github.com/BytedanceSpeech/seed-tts-eval
|
200 |
+
|
201 |
+
|
202 |
+
def get_seed_tts_test(metalst, gen_wav_dir, gpus):
|
203 |
+
f = open(metalst)
|
204 |
+
lines = f.readlines()
|
205 |
+
f.close()
|
206 |
+
|
207 |
+
test_set_ = []
|
208 |
+
for line in tqdm(lines):
|
209 |
+
if len(line.strip().split("|")) == 5:
|
210 |
+
utt, prompt_text, prompt_wav, gt_text, gt_wav = line.strip().split("|")
|
211 |
+
elif len(line.strip().split("|")) == 4:
|
212 |
+
utt, prompt_text, prompt_wav, gt_text = line.strip().split("|")
|
213 |
+
|
214 |
+
if not os.path.exists(os.path.join(gen_wav_dir, utt + ".wav")):
|
215 |
+
continue
|
216 |
+
gen_wav = os.path.join(gen_wav_dir, utt + ".wav")
|
217 |
+
if not os.path.isabs(prompt_wav):
|
218 |
+
prompt_wav = os.path.join(os.path.dirname(metalst), prompt_wav)
|
219 |
+
|
220 |
+
test_set_.append((gen_wav, prompt_wav, gt_text))
|
221 |
+
|
222 |
+
num_jobs = len(gpus)
|
223 |
+
if num_jobs == 1:
|
224 |
+
return [(gpus[0], test_set_)]
|
225 |
+
|
226 |
+
wav_per_job = len(test_set_) // num_jobs + 1
|
227 |
+
test_set = []
|
228 |
+
for i in range(num_jobs):
|
229 |
+
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
230 |
+
|
231 |
+
return test_set
|
232 |
+
|
233 |
+
|
234 |
+
# get librispeech test-clean cross sentence test
|
235 |
+
|
236 |
+
|
237 |
+
def get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path, eval_ground_truth=False):
|
238 |
+
f = open(metalst)
|
239 |
+
lines = f.readlines()
|
240 |
+
f.close()
|
241 |
+
|
242 |
+
test_set_ = []
|
243 |
+
for line in tqdm(lines):
|
244 |
+
ref_utt, ref_dur, ref_txt, gen_utt, gen_dur, gen_txt = line.strip().split("\t")
|
245 |
+
|
246 |
+
if eval_ground_truth:
|
247 |
+
gen_spk_id, gen_chaptr_id, _ = gen_utt.split("-")
|
248 |
+
gen_wav = os.path.join(librispeech_test_clean_path, gen_spk_id, gen_chaptr_id, gen_utt + ".flac")
|
249 |
+
else:
|
250 |
+
if not os.path.exists(os.path.join(gen_wav_dir, gen_utt + ".wav")):
|
251 |
+
raise FileNotFoundError(f"Generated wav not found: {gen_utt}")
|
252 |
+
gen_wav = os.path.join(gen_wav_dir, gen_utt + ".wav")
|
253 |
+
|
254 |
+
ref_spk_id, ref_chaptr_id, _ = ref_utt.split("-")
|
255 |
+
ref_wav = os.path.join(librispeech_test_clean_path, ref_spk_id, ref_chaptr_id, ref_utt + ".flac")
|
256 |
+
|
257 |
+
test_set_.append((gen_wav, ref_wav, gen_txt))
|
258 |
+
|
259 |
+
num_jobs = len(gpus)
|
260 |
+
if num_jobs == 1:
|
261 |
+
return [(gpus[0], test_set_)]
|
262 |
+
|
263 |
+
wav_per_job = len(test_set_) // num_jobs + 1
|
264 |
+
test_set = []
|
265 |
+
for i in range(num_jobs):
|
266 |
+
test_set.append((gpus[i], test_set_[i * wav_per_job : (i + 1) * wav_per_job]))
|
267 |
+
|
268 |
+
return test_set
|
269 |
+
|
270 |
+
|
271 |
+
# load asr model
|
272 |
+
|
273 |
+
|
274 |
+
def load_asr_model(lang, ckpt_dir=""):
|
275 |
+
if lang == "zh":
|
276 |
+
from funasr import AutoModel
|
277 |
+
|
278 |
+
model = AutoModel(
|
279 |
+
model=os.path.join(ckpt_dir, "paraformer-zh"),
|
280 |
+
# vad_model = os.path.join(ckpt_dir, "fsmn-vad"),
|
281 |
+
# punc_model = os.path.join(ckpt_dir, "ct-punc"),
|
282 |
+
# spk_model = os.path.join(ckpt_dir, "cam++"),
|
283 |
+
disable_update=True,
|
284 |
+
) # following seed-tts setting
|
285 |
+
elif lang == "en":
|
286 |
+
from faster_whisper import WhisperModel
|
287 |
+
|
288 |
+
model_size = "large-v3" if ckpt_dir == "" else ckpt_dir
|
289 |
+
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
290 |
+
return model
|
291 |
+
|
292 |
+
|
293 |
+
# WER Evaluation, the way Seed-TTS does
|
294 |
+
|
295 |
+
|
296 |
+
def run_asr_wer(args):
|
297 |
+
rank, lang, test_set, ckpt_dir = args
|
298 |
+
|
299 |
+
if lang == "zh":
|
300 |
+
import zhconv
|
301 |
+
|
302 |
+
torch.cuda.set_device(rank)
|
303 |
+
elif lang == "en":
|
304 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = str(rank)
|
305 |
+
else:
|
306 |
+
raise NotImplementedError(
|
307 |
+
"lang support only 'zh' (funasr paraformer-zh), 'en' (faster-whisper-large-v3), for now."
|
308 |
+
)
|
309 |
+
|
310 |
+
asr_model = load_asr_model(lang, ckpt_dir=ckpt_dir)
|
311 |
+
|
312 |
+
from zhon.hanzi import punctuation
|
313 |
+
|
314 |
+
punctuation_all = punctuation + string.punctuation
|
315 |
+
wers = []
|
316 |
+
|
317 |
+
from jiwer import compute_measures
|
318 |
+
|
319 |
+
for gen_wav, prompt_wav, truth in tqdm(test_set):
|
320 |
+
if lang == "zh":
|
321 |
+
res = asr_model.generate(input=gen_wav, batch_size_s=300, disable_pbar=True)
|
322 |
+
hypo = res[0]["text"]
|
323 |
+
hypo = zhconv.convert(hypo, "zh-cn")
|
324 |
+
elif lang == "en":
|
325 |
+
segments, _ = asr_model.transcribe(gen_wav, beam_size=5, language="en")
|
326 |
+
hypo = ""
|
327 |
+
for segment in segments:
|
328 |
+
hypo = hypo + " " + segment.text
|
329 |
+
|
330 |
+
# raw_truth = truth
|
331 |
+
# raw_hypo = hypo
|
332 |
+
|
333 |
+
for x in punctuation_all:
|
334 |
+
truth = truth.replace(x, "")
|
335 |
+
hypo = hypo.replace(x, "")
|
336 |
+
|
337 |
+
truth = truth.replace(" ", " ")
|
338 |
+
hypo = hypo.replace(" ", " ")
|
339 |
+
|
340 |
+
if lang == "zh":
|
341 |
+
truth = " ".join([x for x in truth])
|
342 |
+
hypo = " ".join([x for x in hypo])
|
343 |
+
elif lang == "en":
|
344 |
+
truth = truth.lower()
|
345 |
+
hypo = hypo.lower()
|
346 |
+
|
347 |
+
measures = compute_measures(truth, hypo)
|
348 |
+
wer = measures["wer"]
|
349 |
+
|
350 |
+
# ref_list = truth.split(" ")
|
351 |
+
# subs = measures["substitutions"] / len(ref_list)
|
352 |
+
# dele = measures["deletions"] / len(ref_list)
|
353 |
+
# inse = measures["insertions"] / len(ref_list)
|
354 |
+
|
355 |
+
wers.append(wer)
|
356 |
+
|
357 |
+
return wers
|
358 |
+
|
359 |
+
|
360 |
+
# SIM Evaluation
|
361 |
+
|
362 |
+
|
363 |
+
def run_sim(args):
|
364 |
+
rank, test_set, ckpt_dir = args
|
365 |
+
device = f"cuda:{rank}"
|
366 |
+
|
367 |
+
model = ECAPA_TDNN_SMALL(feat_dim=1024, feat_type="wavlm_large", config_path=None)
|
368 |
+
state_dict = torch.load(ckpt_dir, weights_only=True, map_location=lambda storage, loc: storage)
|
369 |
+
model.load_state_dict(state_dict["model"], strict=False)
|
370 |
+
|
371 |
+
use_gpu = True if torch.cuda.is_available() else False
|
372 |
+
if use_gpu:
|
373 |
+
model = model.cuda(device)
|
374 |
+
model.eval()
|
375 |
+
|
376 |
+
sim_list = []
|
377 |
+
for wav1, wav2, truth in tqdm(test_set):
|
378 |
+
wav1, sr1 = torchaudio.load(wav1)
|
379 |
+
wav2, sr2 = torchaudio.load(wav2)
|
380 |
+
|
381 |
+
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
382 |
+
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
383 |
+
wav1 = resample1(wav1)
|
384 |
+
wav2 = resample2(wav2)
|
385 |
+
|
386 |
+
if use_gpu:
|
387 |
+
wav1 = wav1.cuda(device)
|
388 |
+
wav2 = wav2.cuda(device)
|
389 |
+
with torch.no_grad():
|
390 |
+
emb1 = model(wav1)
|
391 |
+
emb2 = model(wav2)
|
392 |
+
|
393 |
+
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
394 |
+
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
395 |
+
sim_list.append(sim)
|
396 |
+
|
397 |
+
return sim_list
|
src/f5_tts/infer/README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inference
|
2 |
+
|
3 |
+
The pretrained model checkpoints can be reached at [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS) and [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), or will be automatically downloaded when running inference scripts.
|
4 |
+
|
5 |
+
Currently support **30s for a single** generation, which is the **total length** including both prompt and output audio. However, you can provide `infer_cli` and `infer_gradio` with longer text, will automatically do chunk generation. Long reference audio will be **clip short to ~15s**.
|
6 |
+
|
7 |
+
To avoid possible inference failures, make sure you have seen through the following instructions.
|
8 |
+
|
9 |
+
- Use reference audio <15s and leave some silence (e.g. 1s) at the end. Otherwise there is a risk of truncating in the middle of word, leading to suboptimal generation.
|
10 |
+
- Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
|
11 |
+
- Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses.
|
12 |
+
- Preprocess numbers to Chinese letters if you want to have them read in Chinese, otherwise in English.
|
13 |
+
|
14 |
+
|
15 |
+
## Gradio App
|
16 |
+
|
17 |
+
Currently supported features:
|
18 |
+
|
19 |
+
- Basic TTS with Chunk Inference
|
20 |
+
- Multi-Style / Multi-Speaker Generation
|
21 |
+
- Voice Chat powered by Qwen2.5-3B-Instruct
|
22 |
+
|
23 |
+
The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
|
24 |
+
|
25 |
+
The script will load model checkpoints from Huggingface. You can also manually download files and update the path to `load_model()` in `infer_gradio.py`. Currently only load TTS models first, will load ASR model to do transcription if `ref_text` not provided, will load LLM model if use Voice Chat.
|
26 |
+
|
27 |
+
Could also be used as a component for larger application.
|
28 |
+
```python
|
29 |
+
import gradio as gr
|
30 |
+
from f5_tts.infer.infer_gradio import app
|
31 |
+
|
32 |
+
with gr.Blocks() as main_app:
|
33 |
+
gr.Markdown("# This is an example of using F5-TTS within a bigger Gradio app")
|
34 |
+
|
35 |
+
# ... other Gradio components
|
36 |
+
|
37 |
+
app.render()
|
38 |
+
|
39 |
+
main_app.launch()
|
40 |
+
```
|
41 |
+
|
42 |
+
|
43 |
+
## CLI Inference
|
44 |
+
|
45 |
+
The cli command `f5-tts_infer-cli` equals to `python src/f5_tts/infer/infer_cli.py`, which is a command line tool for inference.
|
46 |
+
|
47 |
+
The script will load model checkpoints from Huggingface. You can also manually download files and use `--ckpt_file` to specify the model you want to load, or directly update in `infer_cli.py`.
|
48 |
+
|
49 |
+
For change vocab.txt use `--vocab_file` to provide your `vocab.txt` file.
|
50 |
+
|
51 |
+
Basically you can inference with flags:
|
52 |
+
```bash
|
53 |
+
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
54 |
+
f5-tts_infer-cli \
|
55 |
+
--model "F5-TTS" \
|
56 |
+
--ref_audio "ref_audio.wav" \
|
57 |
+
--ref_text "The content, subtitle or transcription of reference audio." \
|
58 |
+
--gen_text "Some text you want TTS model generate for you."
|
59 |
+
```
|
60 |
+
|
61 |
+
And a `.toml` file would help with more flexible usage.
|
62 |
+
|
63 |
+
```bash
|
64 |
+
f5-tts_infer-cli -c custom.toml
|
65 |
+
```
|
66 |
+
|
67 |
+
For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
|
68 |
+
|
69 |
+
```toml
|
70 |
+
# F5-TTS | E2-TTS
|
71 |
+
model = "F5-TTS"
|
72 |
+
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
73 |
+
# If an empty "", transcribes the reference audio automatically.
|
74 |
+
ref_text = "Some call me nature, others call me mother nature."
|
75 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
|
76 |
+
# File with text to generate. Ignores the text above.
|
77 |
+
gen_file = ""
|
78 |
+
remove_silence = false
|
79 |
+
output_dir = "tests"
|
80 |
+
```
|
81 |
+
|
82 |
+
You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
|
83 |
+
|
84 |
+
```toml
|
85 |
+
# F5-TTS | E2-TTS
|
86 |
+
model = "F5-TTS"
|
87 |
+
ref_audio = "infer/examples/multi/main.flac"
|
88 |
+
# If an empty "", transcribes the reference audio automatically.
|
89 |
+
ref_text = ""
|
90 |
+
gen_text = ""
|
91 |
+
# File with text to generate. Ignores the text above.
|
92 |
+
gen_file = "infer/examples/multi/story.txt"
|
93 |
+
remove_silence = true
|
94 |
+
output_dir = "tests"
|
95 |
+
|
96 |
+
[voices.town]
|
97 |
+
ref_audio = "infer/examples/multi/town.flac"
|
98 |
+
ref_text = ""
|
99 |
+
|
100 |
+
[voices.country]
|
101 |
+
ref_audio = "infer/examples/multi/country.flac"
|
102 |
+
ref_text = ""
|
103 |
+
```
|
104 |
+
You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
|
105 |
+
|
106 |
+
## Speech Editing
|
107 |
+
|
108 |
+
To test speech editing capabilities, use the following command:
|
109 |
+
|
110 |
+
```bash
|
111 |
+
python src/f5_tts/infer/speech_edit.py
|
112 |
+
```
|
src/f5_tts/infer/examples/basic/basic.toml
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
+
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
4 |
+
# If an empty "", transcribes the reference audio automatically.
|
5 |
+
ref_text = "Some call me nature, others call me mother nature."
|
6 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring."
|
7 |
+
# File with text to generate. Ignores the text above.
|
8 |
+
gen_file = ""
|
9 |
+
remove_silence = false
|
10 |
+
output_dir = "tests"
|
src/f5_tts/infer/examples/basic/basic_ref_en.wav
ADDED
Binary file (256 kB). View file
|
|
src/f5_tts/infer/examples/basic/basic_ref_zh.wav
ADDED
Binary file (325 kB). View file
|
|
src/f5_tts/infer/examples/multi/country.flac
ADDED
Binary file (180 kB). View file
|
|
src/f5_tts/infer/examples/multi/main.flac
ADDED
Binary file (279 kB). View file
|
|
src/f5_tts/infer/examples/multi/story.toml
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
+
ref_audio = "infer/examples/multi/main.flac"
|
4 |
+
# If an empty "", transcribes the reference audio automatically.
|
5 |
+
ref_text = ""
|
6 |
+
gen_text = ""
|
7 |
+
# File with text to generate. Ignores the text above.
|
8 |
+
gen_file = "infer/examples/multi/story.txt"
|
9 |
+
remove_silence = true
|
10 |
+
output_dir = "tests"
|
11 |
+
|
12 |
+
[voices.town]
|
13 |
+
ref_audio = "infer/examples/multi/town.flac"
|
14 |
+
ref_text = ""
|
15 |
+
|
16 |
+
[voices.country]
|
17 |
+
ref_audio = "infer/examples/multi/country.flac"
|
18 |
+
ref_text = ""
|
19 |
+
|
src/f5_tts/infer/examples/multi/story.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
A Town Mouse and a Country Mouse were acquaintances, and the Country Mouse one day invited his friend to come and see him at his home in the fields. The Town Mouse came, and they sat down to a dinner of barleycorns and roots, the latter of which had a distinctly earthy flavour. The fare was not much to the taste of the guest, and presently he broke out with [town] “My poor dear friend, you live here no better than the ants. Now, you should just see how I fare! My larder is a regular horn of plenty. You must come and stay with me, and I promise you you shall live on the fat of the land.” [main] So when he returned to town he took the Country Mouse with him, and showed him into a larder containing flour and oatmeal and figs and honey and dates. The Country Mouse had never seen anything like it, and sat down to enjoy the luxuries his friend provided: but before they had well begun, the door of the larder opened and someone came in. The two Mice scampered off and hid themselves in a narrow and exceedingly uncomfortable hole. Presently, when all was quiet, they ventured out again; but someone else came in, and off they scuttled again. This was too much for the visitor. [country] “Goodbye,” [main] said he, [country] “I’m off. You live in the lap of luxury, I can see, but you are surrounded by dangers; whereas at home I can enjoy my simple dinner of roots and corn in peace.”
|
src/f5_tts/infer/examples/multi/town.flac
ADDED
Binary file (229 kB). View file
|
|
src/f5_tts/infer/examples/vocab.txt
ADDED
@@ -0,0 +1,2545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
!
|
3 |
+
"
|
4 |
+
#
|
5 |
+
$
|
6 |
+
%
|
7 |
+
&
|
8 |
+
'
|
9 |
+
(
|
10 |
+
)
|
11 |
+
*
|
12 |
+
+
|
13 |
+
,
|
14 |
+
-
|
15 |
+
.
|
16 |
+
/
|
17 |
+
0
|
18 |
+
1
|
19 |
+
2
|
20 |
+
3
|
21 |
+
4
|
22 |
+
5
|
23 |
+
6
|
24 |
+
7
|
25 |
+
8
|
26 |
+
9
|
27 |
+
:
|
28 |
+
;
|
29 |
+
=
|
30 |
+
>
|
31 |
+
?
|
32 |
+
@
|
33 |
+
A
|
34 |
+
B
|
35 |
+
C
|
36 |
+
D
|
37 |
+
E
|
38 |
+
F
|
39 |
+
G
|
40 |
+
H
|
41 |
+
I
|
42 |
+
J
|
43 |
+
K
|
44 |
+
L
|
45 |
+
M
|
46 |
+
N
|
47 |
+
O
|
48 |
+
P
|
49 |
+
Q
|
50 |
+
R
|
51 |
+
S
|
52 |
+
T
|
53 |
+
U
|
54 |
+
V
|
55 |
+
W
|
56 |
+
X
|
57 |
+
Y
|
58 |
+
Z
|
59 |
+
[
|
60 |
+
\
|
61 |
+
]
|
62 |
+
_
|
63 |
+
a
|
64 |
+
a1
|
65 |
+
ai1
|
66 |
+
ai2
|
67 |
+
ai3
|
68 |
+
ai4
|
69 |
+
an1
|
70 |
+
an3
|
71 |
+
an4
|
72 |
+
ang1
|
73 |
+
ang2
|
74 |
+
ang4
|
75 |
+
ao1
|
76 |
+
ao2
|
77 |
+
ao3
|
78 |
+
ao4
|
79 |
+
b
|
80 |
+
ba
|
81 |
+
ba1
|
82 |
+
ba2
|
83 |
+
ba3
|
84 |
+
ba4
|
85 |
+
bai1
|
86 |
+
bai2
|
87 |
+
bai3
|
88 |
+
bai4
|
89 |
+
ban1
|
90 |
+
ban2
|
91 |
+
ban3
|
92 |
+
ban4
|
93 |
+
bang1
|
94 |
+
bang2
|
95 |
+
bang3
|
96 |
+
bang4
|
97 |
+
bao1
|
98 |
+
bao2
|
99 |
+
bao3
|
100 |
+
bao4
|
101 |
+
bei
|
102 |
+
bei1
|
103 |
+
bei2
|
104 |
+
bei3
|
105 |
+
bei4
|
106 |
+
ben1
|
107 |
+
ben2
|
108 |
+
ben3
|
109 |
+
ben4
|
110 |
+
beng
|
111 |
+
beng1
|
112 |
+
beng2
|
113 |
+
beng3
|
114 |
+
beng4
|
115 |
+
bi1
|
116 |
+
bi2
|
117 |
+
bi3
|
118 |
+
bi4
|
119 |
+
bian1
|
120 |
+
bian2
|
121 |
+
bian3
|
122 |
+
bian4
|
123 |
+
biao1
|
124 |
+
biao2
|
125 |
+
biao3
|
126 |
+
bie1
|
127 |
+
bie2
|
128 |
+
bie3
|
129 |
+
bie4
|
130 |
+
bin1
|
131 |
+
bin4
|
132 |
+
bing1
|
133 |
+
bing2
|
134 |
+
bing3
|
135 |
+
bing4
|
136 |
+
bo
|
137 |
+
bo1
|
138 |
+
bo2
|
139 |
+
bo3
|
140 |
+
bo4
|
141 |
+
bu2
|
142 |
+
bu3
|
143 |
+
bu4
|
144 |
+
c
|
145 |
+
ca1
|
146 |
+
cai1
|
147 |
+
cai2
|
148 |
+
cai3
|
149 |
+
cai4
|
150 |
+
can1
|
151 |
+
can2
|
152 |
+
can3
|
153 |
+
can4
|
154 |
+
cang1
|
155 |
+
cang2
|
156 |
+
cao1
|
157 |
+
cao2
|
158 |
+
cao3
|
159 |
+
ce4
|
160 |
+
cen1
|
161 |
+
cen2
|
162 |
+
ceng1
|
163 |
+
ceng2
|
164 |
+
ceng4
|
165 |
+
cha1
|
166 |
+
cha2
|
167 |
+
cha3
|
168 |
+
cha4
|
169 |
+
chai1
|
170 |
+
chai2
|
171 |
+
chan1
|
172 |
+
chan2
|
173 |
+
chan3
|
174 |
+
chan4
|
175 |
+
chang1
|
176 |
+
chang2
|
177 |
+
chang3
|
178 |
+
chang4
|
179 |
+
chao1
|
180 |
+
chao2
|
181 |
+
chao3
|
182 |
+
che1
|
183 |
+
che2
|
184 |
+
che3
|
185 |
+
che4
|
186 |
+
chen1
|
187 |
+
chen2
|
188 |
+
chen3
|
189 |
+
chen4
|
190 |
+
cheng1
|
191 |
+
cheng2
|
192 |
+
cheng3
|
193 |
+
cheng4
|
194 |
+
chi1
|
195 |
+
chi2
|
196 |
+
chi3
|
197 |
+
chi4
|
198 |
+
chong1
|
199 |
+
chong2
|
200 |
+
chong3
|
201 |
+
chong4
|
202 |
+
chou1
|
203 |
+
chou2
|
204 |
+
chou3
|
205 |
+
chou4
|
206 |
+
chu1
|
207 |
+
chu2
|
208 |
+
chu3
|
209 |
+
chu4
|
210 |
+
chua1
|
211 |
+
chuai1
|
212 |
+
chuai2
|
213 |
+
chuai3
|
214 |
+
chuai4
|
215 |
+
chuan1
|
216 |
+
chuan2
|
217 |
+
chuan3
|
218 |
+
chuan4
|
219 |
+
chuang1
|
220 |
+
chuang2
|
221 |
+
chuang3
|
222 |
+
chuang4
|
223 |
+
chui1
|
224 |
+
chui2
|
225 |
+
chun1
|
226 |
+
chun2
|
227 |
+
chun3
|
228 |
+
chuo1
|
229 |
+
chuo4
|
230 |
+
ci1
|
231 |
+
ci2
|
232 |
+
ci3
|
233 |
+
ci4
|
234 |
+
cong1
|
235 |
+
cong2
|
236 |
+
cou4
|
237 |
+
cu1
|
238 |
+
cu4
|
239 |
+
cuan1
|
240 |
+
cuan2
|
241 |
+
cuan4
|
242 |
+
cui1
|
243 |
+
cui3
|
244 |
+
cui4
|
245 |
+
cun1
|
246 |
+
cun2
|
247 |
+
cun4
|
248 |
+
cuo1
|
249 |
+
cuo2
|
250 |
+
cuo4
|
251 |
+
d
|
252 |
+
da
|
253 |
+
da1
|
254 |
+
da2
|
255 |
+
da3
|
256 |
+
da4
|
257 |
+
dai1
|
258 |
+
dai2
|
259 |
+
dai3
|
260 |
+
dai4
|
261 |
+
dan1
|
262 |
+
dan2
|
263 |
+
dan3
|
264 |
+
dan4
|
265 |
+
dang1
|
266 |
+
dang2
|
267 |
+
dang3
|
268 |
+
dang4
|
269 |
+
dao1
|
270 |
+
dao2
|
271 |
+
dao3
|
272 |
+
dao4
|
273 |
+
de
|
274 |
+
de1
|
275 |
+
de2
|
276 |
+
dei3
|
277 |
+
den4
|
278 |
+
deng1
|
279 |
+
deng2
|
280 |
+
deng3
|
281 |
+
deng4
|
282 |
+
di1
|
283 |
+
di2
|
284 |
+
di3
|
285 |
+
di4
|
286 |
+
dia3
|
287 |
+
dian1
|
288 |
+
dian2
|
289 |
+
dian3
|
290 |
+
dian4
|
291 |
+
diao1
|
292 |
+
diao3
|
293 |
+
diao4
|
294 |
+
die1
|
295 |
+
die2
|
296 |
+
die4
|
297 |
+
ding1
|
298 |
+
ding2
|
299 |
+
ding3
|
300 |
+
ding4
|
301 |
+
diu1
|
302 |
+
dong1
|
303 |
+
dong3
|
304 |
+
dong4
|
305 |
+
dou1
|
306 |
+
dou2
|
307 |
+
dou3
|
308 |
+
dou4
|
309 |
+
du1
|
310 |
+
du2
|
311 |
+
du3
|
312 |
+
du4
|
313 |
+
duan1
|
314 |
+
duan2
|
315 |
+
duan3
|
316 |
+
duan4
|
317 |
+
dui1
|
318 |
+
dui4
|
319 |
+
dun1
|
320 |
+
dun3
|
321 |
+
dun4
|
322 |
+
duo1
|
323 |
+
duo2
|
324 |
+
duo3
|
325 |
+
duo4
|
326 |
+
e
|
327 |
+
e1
|
328 |
+
e2
|
329 |
+
e3
|
330 |
+
e4
|
331 |
+
ei2
|
332 |
+
en1
|
333 |
+
en4
|
334 |
+
er
|
335 |
+
er2
|
336 |
+
er3
|
337 |
+
er4
|
338 |
+
f
|
339 |
+
fa1
|
340 |
+
fa2
|
341 |
+
fa3
|
342 |
+
fa4
|
343 |
+
fan1
|
344 |
+
fan2
|
345 |
+
fan3
|
346 |
+
fan4
|
347 |
+
fang1
|
348 |
+
fang2
|
349 |
+
fang3
|
350 |
+
fang4
|
351 |
+
fei1
|
352 |
+
fei2
|
353 |
+
fei3
|
354 |
+
fei4
|
355 |
+
fen1
|
356 |
+
fen2
|
357 |
+
fen3
|
358 |
+
fen4
|
359 |
+
feng1
|
360 |
+
feng2
|
361 |
+
feng3
|
362 |
+
feng4
|
363 |
+
fo2
|
364 |
+
fou2
|
365 |
+
fou3
|
366 |
+
fu1
|
367 |
+
fu2
|
368 |
+
fu3
|
369 |
+
fu4
|
370 |
+
g
|
371 |
+
ga1
|
372 |
+
ga2
|
373 |
+
ga3
|
374 |
+
ga4
|
375 |
+
gai1
|
376 |
+
gai2
|
377 |
+
gai3
|
378 |
+
gai4
|
379 |
+
gan1
|
380 |
+
gan2
|
381 |
+
gan3
|
382 |
+
gan4
|
383 |
+
gang1
|
384 |
+
gang2
|
385 |
+
gang3
|
386 |
+
gang4
|
387 |
+
gao1
|
388 |
+
gao2
|
389 |
+
gao3
|
390 |
+
gao4
|
391 |
+
ge1
|
392 |
+
ge2
|
393 |
+
ge3
|
394 |
+
ge4
|
395 |
+
gei2
|
396 |
+
gei3
|
397 |
+
gen1
|
398 |
+
gen2
|
399 |
+
gen3
|
400 |
+
gen4
|
401 |
+
geng1
|
402 |
+
geng3
|
403 |
+
geng4
|
404 |
+
gong1
|
405 |
+
gong3
|
406 |
+
gong4
|
407 |
+
gou1
|
408 |
+
gou2
|
409 |
+
gou3
|
410 |
+
gou4
|
411 |
+
gu
|
412 |
+
gu1
|
413 |
+
gu2
|
414 |
+
gu3
|
415 |
+
gu4
|
416 |
+
gua1
|
417 |
+
gua2
|
418 |
+
gua3
|
419 |
+
gua4
|
420 |
+
guai1
|
421 |
+
guai2
|
422 |
+
guai3
|
423 |
+
guai4
|
424 |
+
guan1
|
425 |
+
guan2
|
426 |
+
guan3
|
427 |
+
guan4
|
428 |
+
guang1
|
429 |
+
guang2
|
430 |
+
guang3
|
431 |
+
guang4
|
432 |
+
gui1
|
433 |
+
gui2
|
434 |
+
gui3
|
435 |
+
gui4
|
436 |
+
gun3
|
437 |
+
gun4
|
438 |
+
guo1
|
439 |
+
guo2
|
440 |
+
guo3
|
441 |
+
guo4
|
442 |
+
h
|
443 |
+
ha1
|
444 |
+
ha2
|
445 |
+
ha3
|
446 |
+
hai1
|
447 |
+
hai2
|
448 |
+
hai3
|
449 |
+
hai4
|
450 |
+
han1
|
451 |
+
han2
|
452 |
+
han3
|
453 |
+
han4
|
454 |
+
hang1
|
455 |
+
hang2
|
456 |
+
hang4
|
457 |
+
hao1
|
458 |
+
hao2
|
459 |
+
hao3
|
460 |
+
hao4
|
461 |
+
he1
|
462 |
+
he2
|
463 |
+
he4
|
464 |
+
hei1
|
465 |
+
hen2
|
466 |
+
hen3
|
467 |
+
hen4
|
468 |
+
heng1
|
469 |
+
heng2
|
470 |
+
heng4
|
471 |
+
hong1
|
472 |
+
hong2
|
473 |
+
hong3
|
474 |
+
hong4
|
475 |
+
hou1
|
476 |
+
hou2
|
477 |
+
hou3
|
478 |
+
hou4
|
479 |
+
hu1
|
480 |
+
hu2
|
481 |
+
hu3
|
482 |
+
hu4
|
483 |
+
hua1
|
484 |
+
hua2
|
485 |
+
hua4
|
486 |
+
huai2
|
487 |
+
huai4
|
488 |
+
huan1
|
489 |
+
huan2
|
490 |
+
huan3
|
491 |
+
huan4
|
492 |
+
huang1
|
493 |
+
huang2
|
494 |
+
huang3
|
495 |
+
huang4
|
496 |
+
hui1
|
497 |
+
hui2
|
498 |
+
hui3
|
499 |
+
hui4
|
500 |
+
hun1
|
501 |
+
hun2
|
502 |
+
hun4
|
503 |
+
huo
|
504 |
+
huo1
|
505 |
+
huo2
|
506 |
+
huo3
|
507 |
+
huo4
|
508 |
+
i
|
509 |
+
j
|
510 |
+
ji1
|
511 |
+
ji2
|
512 |
+
ji3
|
513 |
+
ji4
|
514 |
+
jia
|
515 |
+
jia1
|
516 |
+
jia2
|
517 |
+
jia3
|
518 |
+
jia4
|
519 |
+
jian1
|
520 |
+
jian2
|
521 |
+
jian3
|
522 |
+
jian4
|
523 |
+
jiang1
|
524 |
+
jiang2
|
525 |
+
jiang3
|
526 |
+
jiang4
|
527 |
+
jiao1
|
528 |
+
jiao2
|
529 |
+
jiao3
|
530 |
+
jiao4
|
531 |
+
jie1
|
532 |
+
jie2
|
533 |
+
jie3
|
534 |
+
jie4
|
535 |
+
jin1
|
536 |
+
jin2
|
537 |
+
jin3
|
538 |
+
jin4
|
539 |
+
jing1
|
540 |
+
jing2
|
541 |
+
jing3
|
542 |
+
jing4
|
543 |
+
jiong3
|
544 |
+
jiu1
|
545 |
+
jiu2
|
546 |
+
jiu3
|
547 |
+
jiu4
|
548 |
+
ju1
|
549 |
+
ju2
|
550 |
+
ju3
|
551 |
+
ju4
|
552 |
+
juan1
|
553 |
+
juan2
|
554 |
+
juan3
|
555 |
+
juan4
|
556 |
+
jue1
|
557 |
+
jue2
|
558 |
+
jue4
|
559 |
+
jun1
|
560 |
+
jun4
|
561 |
+
k
|
562 |
+
ka1
|
563 |
+
ka2
|
564 |
+
ka3
|
565 |
+
kai1
|
566 |
+
kai2
|
567 |
+
kai3
|
568 |
+
kai4
|
569 |
+
kan1
|
570 |
+
kan2
|
571 |
+
kan3
|
572 |
+
kan4
|
573 |
+
kang1
|
574 |
+
kang2
|
575 |
+
kang4
|
576 |
+
kao1
|
577 |
+
kao2
|
578 |
+
kao3
|
579 |
+
kao4
|
580 |
+
ke1
|
581 |
+
ke2
|
582 |
+
ke3
|
583 |
+
ke4
|
584 |
+
ken3
|
585 |
+
keng1
|
586 |
+
kong1
|
587 |
+
kong3
|
588 |
+
kong4
|
589 |
+
kou1
|
590 |
+
kou2
|
591 |
+
kou3
|
592 |
+
kou4
|
593 |
+
ku1
|
594 |
+
ku2
|
595 |
+
ku3
|
596 |
+
ku4
|
597 |
+
kua1
|
598 |
+
kua3
|
599 |
+
kua4
|
600 |
+
kuai3
|
601 |
+
kuai4
|
602 |
+
kuan1
|
603 |
+
kuan2
|
604 |
+
kuan3
|
605 |
+
kuang1
|
606 |
+
kuang2
|
607 |
+
kuang4
|
608 |
+
kui1
|
609 |
+
kui2
|
610 |
+
kui3
|
611 |
+
kui4
|
612 |
+
kun1
|
613 |
+
kun3
|
614 |
+
kun4
|
615 |
+
kuo4
|
616 |
+
l
|
617 |
+
la
|
618 |
+
la1
|
619 |
+
la2
|
620 |
+
la3
|
621 |
+
la4
|
622 |
+
lai2
|
623 |
+
lai4
|
624 |
+
lan2
|
625 |
+
lan3
|
626 |
+
lan4
|
627 |
+
lang1
|
628 |
+
lang2
|
629 |
+
lang3
|
630 |
+
lang4
|
631 |
+
lao1
|
632 |
+
lao2
|
633 |
+
lao3
|
634 |
+
lao4
|
635 |
+
le
|
636 |
+
le1
|
637 |
+
le4
|
638 |
+
lei
|
639 |
+
lei1
|
640 |
+
lei2
|
641 |
+
lei3
|
642 |
+
lei4
|
643 |
+
leng1
|
644 |
+
leng2
|
645 |
+
leng3
|
646 |
+
leng4
|
647 |
+
li
|
648 |
+
li1
|
649 |
+
li2
|
650 |
+
li3
|
651 |
+
li4
|
652 |
+
lia3
|
653 |
+
lian2
|
654 |
+
lian3
|
655 |
+
lian4
|
656 |
+
liang2
|
657 |
+
liang3
|
658 |
+
liang4
|
659 |
+
liao1
|
660 |
+
liao2
|
661 |
+
liao3
|
662 |
+
liao4
|
663 |
+
lie1
|
664 |
+
lie2
|
665 |
+
lie3
|
666 |
+
lie4
|
667 |
+
lin1
|
668 |
+
lin2
|
669 |
+
lin3
|
670 |
+
lin4
|
671 |
+
ling2
|
672 |
+
ling3
|
673 |
+
ling4
|
674 |
+
liu1
|
675 |
+
liu2
|
676 |
+
liu3
|
677 |
+
liu4
|
678 |
+
long1
|
679 |
+
long2
|
680 |
+
long3
|
681 |
+
long4
|
682 |
+
lou1
|
683 |
+
lou2
|
684 |
+
lou3
|
685 |
+
lou4
|
686 |
+
lu1
|
687 |
+
lu2
|
688 |
+
lu3
|
689 |
+
lu4
|
690 |
+
luan2
|
691 |
+
luan3
|
692 |
+
luan4
|
693 |
+
lun1
|
694 |
+
lun2
|
695 |
+
lun4
|
696 |
+
luo1
|
697 |
+
luo2
|
698 |
+
luo3
|
699 |
+
luo4
|
700 |
+
lv2
|
701 |
+
lv3
|
702 |
+
lv4
|
703 |
+
lve3
|
704 |
+
lve4
|
705 |
+
m
|
706 |
+
ma
|
707 |
+
ma1
|
708 |
+
ma2
|
709 |
+
ma3
|
710 |
+
ma4
|
711 |
+
mai2
|
712 |
+
mai3
|
713 |
+
mai4
|
714 |
+
man1
|
715 |
+
man2
|
716 |
+
man3
|
717 |
+
man4
|
718 |
+
mang2
|
719 |
+
mang3
|
720 |
+
mao1
|
721 |
+
mao2
|
722 |
+
mao3
|
723 |
+
mao4
|
724 |
+
me
|
725 |
+
mei2
|
726 |
+
mei3
|
727 |
+
mei4
|
728 |
+
men
|
729 |
+
men1
|
730 |
+
men2
|
731 |
+
men4
|
732 |
+
meng
|
733 |
+
meng1
|
734 |
+
meng2
|
735 |
+
meng3
|
736 |
+
meng4
|
737 |
+
mi1
|
738 |
+
mi2
|
739 |
+
mi3
|
740 |
+
mi4
|
741 |
+
mian2
|
742 |
+
mian3
|
743 |
+
mian4
|
744 |
+
miao1
|
745 |
+
miao2
|
746 |
+
miao3
|
747 |
+
miao4
|
748 |
+
mie1
|
749 |
+
mie4
|
750 |
+
min2
|
751 |
+
min3
|
752 |
+
ming2
|
753 |
+
ming3
|
754 |
+
ming4
|
755 |
+
miu4
|
756 |
+
mo1
|
757 |
+
mo2
|
758 |
+
mo3
|
759 |
+
mo4
|
760 |
+
mou1
|
761 |
+
mou2
|
762 |
+
mou3
|
763 |
+
mu2
|
764 |
+
mu3
|
765 |
+
mu4
|
766 |
+
n
|
767 |
+
n2
|
768 |
+
na1
|
769 |
+
na2
|
770 |
+
na3
|
771 |
+
na4
|
772 |
+
nai2
|
773 |
+
nai3
|
774 |
+
nai4
|
775 |
+
nan1
|
776 |
+
nan2
|
777 |
+
nan3
|
778 |
+
nan4
|
779 |
+
nang1
|
780 |
+
nang2
|
781 |
+
nang3
|
782 |
+
nao1
|
783 |
+
nao2
|
784 |
+
nao3
|
785 |
+
nao4
|
786 |
+
ne
|
787 |
+
ne2
|
788 |
+
ne4
|
789 |
+
nei3
|
790 |
+
nei4
|
791 |
+
nen4
|
792 |
+
neng2
|
793 |
+
ni1
|
794 |
+
ni2
|
795 |
+
ni3
|
796 |
+
ni4
|
797 |
+
nian1
|
798 |
+
nian2
|
799 |
+
nian3
|
800 |
+
nian4
|
801 |
+
niang2
|
802 |
+
niang4
|
803 |
+
niao2
|
804 |
+
niao3
|
805 |
+
niao4
|
806 |
+
nie1
|
807 |
+
nie4
|
808 |
+
nin2
|
809 |
+
ning2
|
810 |
+
ning3
|
811 |
+
ning4
|
812 |
+
niu1
|
813 |
+
niu2
|
814 |
+
niu3
|
815 |
+
niu4
|
816 |
+
nong2
|
817 |
+
nong4
|
818 |
+
nou4
|
819 |
+
nu2
|
820 |
+
nu3
|
821 |
+
nu4
|
822 |
+
nuan3
|
823 |
+
nuo2
|
824 |
+
nuo4
|
825 |
+
nv2
|
826 |
+
nv3
|
827 |
+
nve4
|
828 |
+
o
|
829 |
+
o1
|
830 |
+
o2
|
831 |
+
ou1
|
832 |
+
ou2
|
833 |
+
ou3
|
834 |
+
ou4
|
835 |
+
p
|
836 |
+
pa1
|
837 |
+
pa2
|
838 |
+
pa4
|
839 |
+
pai1
|
840 |
+
pai2
|
841 |
+
pai3
|
842 |
+
pai4
|
843 |
+
pan1
|
844 |
+
pan2
|
845 |
+
pan4
|
846 |
+
pang1
|
847 |
+
pang2
|
848 |
+
pang4
|
849 |
+
pao1
|
850 |
+
pao2
|
851 |
+
pao3
|
852 |
+
pao4
|
853 |
+
pei1
|
854 |
+
pei2
|
855 |
+
pei4
|
856 |
+
pen1
|
857 |
+
pen2
|
858 |
+
pen4
|
859 |
+
peng1
|
860 |
+
peng2
|
861 |
+
peng3
|
862 |
+
peng4
|
863 |
+
pi1
|
864 |
+
pi2
|
865 |
+
pi3
|
866 |
+
pi4
|
867 |
+
pian1
|
868 |
+
pian2
|
869 |
+
pian4
|
870 |
+
piao1
|
871 |
+
piao2
|
872 |
+
piao3
|
873 |
+
piao4
|
874 |
+
pie1
|
875 |
+
pie2
|
876 |
+
pie3
|
877 |
+
pin1
|
878 |
+
pin2
|
879 |
+
pin3
|
880 |
+
pin4
|
881 |
+
ping1
|
882 |
+
ping2
|
883 |
+
po1
|
884 |
+
po2
|
885 |
+
po3
|
886 |
+
po4
|
887 |
+
pou1
|
888 |
+
pu1
|
889 |
+
pu2
|
890 |
+
pu3
|
891 |
+
pu4
|
892 |
+
q
|
893 |
+
qi1
|
894 |
+
qi2
|
895 |
+
qi3
|
896 |
+
qi4
|
897 |
+
qia1
|
898 |
+
qia3
|
899 |
+
qia4
|
900 |
+
qian1
|
901 |
+
qian2
|
902 |
+
qian3
|
903 |
+
qian4
|
904 |
+
qiang1
|
905 |
+
qiang2
|
906 |
+
qiang3
|
907 |
+
qiang4
|
908 |
+
qiao1
|
909 |
+
qiao2
|
910 |
+
qiao3
|
911 |
+
qiao4
|
912 |
+
qie1
|
913 |
+
qie2
|
914 |
+
qie3
|
915 |
+
qie4
|
916 |
+
qin1
|
917 |
+
qin2
|
918 |
+
qin3
|
919 |
+
qin4
|
920 |
+
qing1
|
921 |
+
qing2
|
922 |
+
qing3
|
923 |
+
qing4
|
924 |
+
qiong1
|
925 |
+
qiong2
|
926 |
+
qiu1
|
927 |
+
qiu2
|
928 |
+
qiu3
|
929 |
+
qu1
|
930 |
+
qu2
|
931 |
+
qu3
|
932 |
+
qu4
|
933 |
+
quan1
|
934 |
+
quan2
|
935 |
+
quan3
|
936 |
+
quan4
|
937 |
+
que1
|
938 |
+
que2
|
939 |
+
que4
|
940 |
+
qun2
|
941 |
+
r
|
942 |
+
ran2
|
943 |
+
ran3
|
944 |
+
rang1
|
945 |
+
rang2
|
946 |
+
rang3
|
947 |
+
rang4
|
948 |
+
rao2
|
949 |
+
rao3
|
950 |
+
rao4
|
951 |
+
re2
|
952 |
+
re3
|
953 |
+
re4
|
954 |
+
ren2
|
955 |
+
ren3
|
956 |
+
ren4
|
957 |
+
reng1
|
958 |
+
reng2
|
959 |
+
ri4
|
960 |
+
rong1
|
961 |
+
rong2
|
962 |
+
rong3
|
963 |
+
rou2
|
964 |
+
rou4
|
965 |
+
ru2
|
966 |
+
ru3
|
967 |
+
ru4
|
968 |
+
ruan2
|
969 |
+
ruan3
|
970 |
+
rui3
|
971 |
+
rui4
|
972 |
+
run4
|
973 |
+
ruo4
|
974 |
+
s
|
975 |
+
sa1
|
976 |
+
sa2
|
977 |
+
sa3
|
978 |
+
sa4
|
979 |
+
sai1
|
980 |
+
sai4
|
981 |
+
san1
|
982 |
+
san2
|
983 |
+
san3
|
984 |
+
san4
|
985 |
+
sang1
|
986 |
+
sang3
|
987 |
+
sang4
|
988 |
+
sao1
|
989 |
+
sao2
|
990 |
+
sao3
|
991 |
+
sao4
|
992 |
+
se4
|
993 |
+
sen1
|
994 |
+
seng1
|
995 |
+
sha1
|
996 |
+
sha2
|
997 |
+
sha3
|
998 |
+
sha4
|
999 |
+
shai1
|
1000 |
+
shai2
|
1001 |
+
shai3
|
1002 |
+
shai4
|
1003 |
+
shan1
|
1004 |
+
shan3
|
1005 |
+
shan4
|
1006 |
+
shang
|
1007 |
+
shang1
|
1008 |
+
shang3
|
1009 |
+
shang4
|
1010 |
+
shao1
|
1011 |
+
shao2
|
1012 |
+
shao3
|
1013 |
+
shao4
|
1014 |
+
she1
|
1015 |
+
she2
|
1016 |
+
she3
|
1017 |
+
she4
|
1018 |
+
shei2
|
1019 |
+
shen1
|
1020 |
+
shen2
|
1021 |
+
shen3
|
1022 |
+
shen4
|
1023 |
+
sheng1
|
1024 |
+
sheng2
|
1025 |
+
sheng3
|
1026 |
+
sheng4
|
1027 |
+
shi
|
1028 |
+
shi1
|
1029 |
+
shi2
|
1030 |
+
shi3
|
1031 |
+
shi4
|
1032 |
+
shou1
|
1033 |
+
shou2
|
1034 |
+
shou3
|
1035 |
+
shou4
|
1036 |
+
shu1
|
1037 |
+
shu2
|
1038 |
+
shu3
|
1039 |
+
shu4
|
1040 |
+
shua1
|
1041 |
+
shua2
|
1042 |
+
shua3
|
1043 |
+
shua4
|
1044 |
+
shuai1
|
1045 |
+
shuai3
|
1046 |
+
shuai4
|
1047 |
+
shuan1
|
1048 |
+
shuan4
|
1049 |
+
shuang1
|
1050 |
+
shuang3
|
1051 |
+
shui2
|
1052 |
+
shui3
|
1053 |
+
shui4
|
1054 |
+
shun3
|
1055 |
+
shun4
|
1056 |
+
shuo1
|
1057 |
+
shuo4
|
1058 |
+
si1
|
1059 |
+
si2
|
1060 |
+
si3
|
1061 |
+
si4
|
1062 |
+
song1
|
1063 |
+
song3
|
1064 |
+
song4
|
1065 |
+
sou1
|
1066 |
+
sou3
|
1067 |
+
sou4
|
1068 |
+
su1
|
1069 |
+
su2
|
1070 |
+
su4
|
1071 |
+
suan1
|
1072 |
+
suan4
|
1073 |
+
sui1
|
1074 |
+
sui2
|
1075 |
+
sui3
|
1076 |
+
sui4
|
1077 |
+
sun1
|
1078 |
+
sun3
|
1079 |
+
suo
|
1080 |
+
suo1
|
1081 |
+
suo2
|
1082 |
+
suo3
|
1083 |
+
t
|
1084 |
+
ta1
|
1085 |
+
ta2
|
1086 |
+
ta3
|
1087 |
+
ta4
|
1088 |
+
tai1
|
1089 |
+
tai2
|
1090 |
+
tai4
|
1091 |
+
tan1
|
1092 |
+
tan2
|
1093 |
+
tan3
|
1094 |
+
tan4
|
1095 |
+
tang1
|
1096 |
+
tang2
|
1097 |
+
tang3
|
1098 |
+
tang4
|
1099 |
+
tao1
|
1100 |
+
tao2
|
1101 |
+
tao3
|
1102 |
+
tao4
|
1103 |
+
te4
|
1104 |
+
teng2
|
1105 |
+
ti1
|
1106 |
+
ti2
|
1107 |
+
ti3
|
1108 |
+
ti4
|
1109 |
+
tian1
|
1110 |
+
tian2
|
1111 |
+
tian3
|
1112 |
+
tiao1
|
1113 |
+
tiao2
|
1114 |
+
tiao3
|
1115 |
+
tiao4
|
1116 |
+
tie1
|
1117 |
+
tie2
|
1118 |
+
tie3
|
1119 |
+
tie4
|
1120 |
+
ting1
|
1121 |
+
ting2
|
1122 |
+
ting3
|
1123 |
+
tong1
|
1124 |
+
tong2
|
1125 |
+
tong3
|
1126 |
+
tong4
|
1127 |
+
tou
|
1128 |
+
tou1
|
1129 |
+
tou2
|
1130 |
+
tou4
|
1131 |
+
tu1
|
1132 |
+
tu2
|
1133 |
+
tu3
|
1134 |
+
tu4
|
1135 |
+
tuan1
|
1136 |
+
tuan2
|
1137 |
+
tui1
|
1138 |
+
tui2
|
1139 |
+
tui3
|
1140 |
+
tui4
|
1141 |
+
tun1
|
1142 |
+
tun2
|
1143 |
+
tun4
|
1144 |
+
tuo1
|
1145 |
+
tuo2
|
1146 |
+
tuo3
|
1147 |
+
tuo4
|
1148 |
+
u
|
1149 |
+
v
|
1150 |
+
w
|
1151 |
+
wa
|
1152 |
+
wa1
|
1153 |
+
wa2
|
1154 |
+
wa3
|
1155 |
+
wa4
|
1156 |
+
wai1
|
1157 |
+
wai3
|
1158 |
+
wai4
|
1159 |
+
wan1
|
1160 |
+
wan2
|
1161 |
+
wan3
|
1162 |
+
wan4
|
1163 |
+
wang1
|
1164 |
+
wang2
|
1165 |
+
wang3
|
1166 |
+
wang4
|
1167 |
+
wei1
|
1168 |
+
wei2
|
1169 |
+
wei3
|
1170 |
+
wei4
|
1171 |
+
wen1
|
1172 |
+
wen2
|
1173 |
+
wen3
|
1174 |
+
wen4
|
1175 |
+
weng1
|
1176 |
+
weng4
|
1177 |
+
wo1
|
1178 |
+
wo2
|
1179 |
+
wo3
|
1180 |
+
wo4
|
1181 |
+
wu1
|
1182 |
+
wu2
|
1183 |
+
wu3
|
1184 |
+
wu4
|
1185 |
+
x
|
1186 |
+
xi1
|
1187 |
+
xi2
|
1188 |
+
xi3
|
1189 |
+
xi4
|
1190 |
+
xia1
|
1191 |
+
xia2
|
1192 |
+
xia4
|
1193 |
+
xian1
|
1194 |
+
xian2
|
1195 |
+
xian3
|
1196 |
+
xian4
|
1197 |
+
xiang1
|
1198 |
+
xiang2
|
1199 |
+
xiang3
|
1200 |
+
xiang4
|
1201 |
+
xiao1
|
1202 |
+
xiao2
|
1203 |
+
xiao3
|
1204 |
+
xiao4
|
1205 |
+
xie1
|
1206 |
+
xie2
|
1207 |
+
xie3
|
1208 |
+
xie4
|
1209 |
+
xin1
|
1210 |
+
xin2
|
1211 |
+
xin4
|
1212 |
+
xing1
|
1213 |
+
xing2
|
1214 |
+
xing3
|
1215 |
+
xing4
|
1216 |
+
xiong1
|
1217 |
+
xiong2
|
1218 |
+
xiu1
|
1219 |
+
xiu3
|
1220 |
+
xiu4
|
1221 |
+
xu
|
1222 |
+
xu1
|
1223 |
+
xu2
|
1224 |
+
xu3
|
1225 |
+
xu4
|
1226 |
+
xuan1
|
1227 |
+
xuan2
|
1228 |
+
xuan3
|
1229 |
+
xuan4
|
1230 |
+
xue1
|
1231 |
+
xue2
|
1232 |
+
xue3
|
1233 |
+
xue4
|
1234 |
+
xun1
|
1235 |
+
xun2
|
1236 |
+
xun4
|
1237 |
+
y
|
1238 |
+
ya
|
1239 |
+
ya1
|
1240 |
+
ya2
|
1241 |
+
ya3
|
1242 |
+
ya4
|
1243 |
+
yan1
|
1244 |
+
yan2
|
1245 |
+
yan3
|
1246 |
+
yan4
|
1247 |
+
yang1
|
1248 |
+
yang2
|
1249 |
+
yang3
|
1250 |
+
yang4
|
1251 |
+
yao1
|
1252 |
+
yao2
|
1253 |
+
yao3
|
1254 |
+
yao4
|
1255 |
+
ye1
|
1256 |
+
ye2
|
1257 |
+
ye3
|
1258 |
+
ye4
|
1259 |
+
yi
|
1260 |
+
yi1
|
1261 |
+
yi2
|
1262 |
+
yi3
|
1263 |
+
yi4
|
1264 |
+
yin1
|
1265 |
+
yin2
|
1266 |
+
yin3
|
1267 |
+
yin4
|
1268 |
+
ying1
|
1269 |
+
ying2
|
1270 |
+
ying3
|
1271 |
+
ying4
|
1272 |
+
yo1
|
1273 |
+
yong1
|
1274 |
+
yong2
|
1275 |
+
yong3
|
1276 |
+
yong4
|
1277 |
+
you1
|
1278 |
+
you2
|
1279 |
+
you3
|
1280 |
+
you4
|
1281 |
+
yu1
|
1282 |
+
yu2
|
1283 |
+
yu3
|
1284 |
+
yu4
|
1285 |
+
yuan1
|
1286 |
+
yuan2
|
1287 |
+
yuan3
|
1288 |
+
yuan4
|
1289 |
+
yue1
|
1290 |
+
yue4
|
1291 |
+
yun1
|
1292 |
+
yun2
|
1293 |
+
yun3
|
1294 |
+
yun4
|
1295 |
+
z
|
1296 |
+
za1
|
1297 |
+
za2
|
1298 |
+
za3
|
1299 |
+
zai1
|
1300 |
+
zai3
|
1301 |
+
zai4
|
1302 |
+
zan1
|
1303 |
+
zan2
|
1304 |
+
zan3
|
1305 |
+
zan4
|
1306 |
+
zang1
|
1307 |
+
zang4
|
1308 |
+
zao1
|
1309 |
+
zao2
|
1310 |
+
zao3
|
1311 |
+
zao4
|
1312 |
+
ze2
|
1313 |
+
ze4
|
1314 |
+
zei2
|
1315 |
+
zen3
|
1316 |
+
zeng1
|
1317 |
+
zeng4
|
1318 |
+
zha1
|
1319 |
+
zha2
|
1320 |
+
zha3
|
1321 |
+
zha4
|
1322 |
+
zhai1
|
1323 |
+
zhai2
|
1324 |
+
zhai3
|
1325 |
+
zhai4
|
1326 |
+
zhan1
|
1327 |
+
zhan2
|
1328 |
+
zhan3
|
1329 |
+
zhan4
|
1330 |
+
zhang1
|
1331 |
+
zhang2
|
1332 |
+
zhang3
|
1333 |
+
zhang4
|
1334 |
+
zhao1
|
1335 |
+
zhao2
|
1336 |
+
zhao3
|
1337 |
+
zhao4
|
1338 |
+
zhe
|
1339 |
+
zhe1
|
1340 |
+
zhe2
|
1341 |
+
zhe3
|
1342 |
+
zhe4
|
1343 |
+
zhen1
|
1344 |
+
zhen2
|
1345 |
+
zhen3
|
1346 |
+
zhen4
|
1347 |
+
zheng1
|
1348 |
+
zheng2
|
1349 |
+
zheng3
|
1350 |
+
zheng4
|
1351 |
+
zhi1
|
1352 |
+
zhi2
|
1353 |
+
zhi3
|
1354 |
+
zhi4
|
1355 |
+
zhong1
|
1356 |
+
zhong2
|
1357 |
+
zhong3
|
1358 |
+
zhong4
|
1359 |
+
zhou1
|
1360 |
+
zhou2
|
1361 |
+
zhou3
|
1362 |
+
zhou4
|
1363 |
+
zhu1
|
1364 |
+
zhu2
|
1365 |
+
zhu3
|
1366 |
+
zhu4
|
1367 |
+
zhua1
|
1368 |
+
zhua2
|
1369 |
+
zhua3
|
1370 |
+
zhuai1
|
1371 |
+
zhuai3
|
1372 |
+
zhuai4
|
1373 |
+
zhuan1
|
1374 |
+
zhuan2
|
1375 |
+
zhuan3
|
1376 |
+
zhuan4
|
1377 |
+
zhuang1
|
1378 |
+
zhuang4
|
1379 |
+
zhui1
|
1380 |
+
zhui4
|
1381 |
+
zhun1
|
1382 |
+
zhun2
|
1383 |
+
zhun3
|
1384 |
+
zhuo1
|
1385 |
+
zhuo2
|
1386 |
+
zi
|
1387 |
+
zi1
|
1388 |
+
zi2
|
1389 |
+
zi3
|
1390 |
+
zi4
|
1391 |
+
zong1
|
1392 |
+
zong2
|
1393 |
+
zong3
|
1394 |
+
zong4
|
1395 |
+
zou1
|
1396 |
+
zou2
|
1397 |
+
zou3
|
1398 |
+
zou4
|
1399 |
+
zu1
|
1400 |
+
zu2
|
1401 |
+
zu3
|
1402 |
+
zuan1
|
1403 |
+
zuan3
|
1404 |
+
zuan4
|
1405 |
+
zui2
|
1406 |
+
zui3
|
1407 |
+
zui4
|
1408 |
+
zun1
|
1409 |
+
zuo
|
1410 |
+
zuo1
|
1411 |
+
zuo2
|
1412 |
+
zuo3
|
1413 |
+
zuo4
|
1414 |
+
{
|
1415 |
+
~
|
1416 |
+
¡
|
1417 |
+
¢
|
1418 |
+
£
|
1419 |
+
¥
|
1420 |
+
§
|
1421 |
+
¨
|
1422 |
+
©
|
1423 |
+
«
|
1424 |
+
®
|
1425 |
+
¯
|
1426 |
+
°
|
1427 |
+
±
|
1428 |
+
²
|
1429 |
+
³
|
1430 |
+
´
|
1431 |
+
µ
|
1432 |
+
·
|
1433 |
+
¹
|
1434 |
+
º
|
1435 |
+
»
|
1436 |
+
¼
|
1437 |
+
½
|
1438 |
+
¾
|
1439 |
+
¿
|
1440 |
+
À
|
1441 |
+
Á
|
1442 |
+
Â
|
1443 |
+
Ã
|
1444 |
+
Ä
|
1445 |
+
Å
|
1446 |
+
Æ
|
1447 |
+
Ç
|
1448 |
+
È
|
1449 |
+
É
|
1450 |
+
Ê
|
1451 |
+
Í
|
1452 |
+
Î
|
1453 |
+
Ñ
|
1454 |
+
Ó
|
1455 |
+
Ö
|
1456 |
+
×
|
1457 |
+
Ø
|
1458 |
+
Ú
|
1459 |
+
Ü
|
1460 |
+
Ý
|
1461 |
+
Þ
|
1462 |
+
ß
|
1463 |
+
à
|
1464 |
+
á
|
1465 |
+
â
|
1466 |
+
ã
|
1467 |
+
ä
|
1468 |
+
å
|
1469 |
+
æ
|
1470 |
+
ç
|
1471 |
+
è
|
1472 |
+
é
|
1473 |
+
ê
|
1474 |
+
ë
|
1475 |
+
ì
|
1476 |
+
í
|
1477 |
+
î
|
1478 |
+
ï
|
1479 |
+
ð
|
1480 |
+
ñ
|
1481 |
+
ò
|
1482 |
+
ó
|
1483 |
+
ô
|
1484 |
+
õ
|
1485 |
+
ö
|
1486 |
+
ø
|
1487 |
+
ù
|
1488 |
+
ú
|
1489 |
+
û
|
1490 |
+
ü
|
1491 |
+
ý
|
1492 |
+
Ā
|
1493 |
+
ā
|
1494 |
+
ă
|
1495 |
+
ą
|
1496 |
+
ć
|
1497 |
+
Č
|
1498 |
+
č
|
1499 |
+
Đ
|
1500 |
+
đ
|
1501 |
+
ē
|
1502 |
+
ė
|
1503 |
+
ę
|
1504 |
+
ě
|
1505 |
+
ĝ
|
1506 |
+
ğ
|
1507 |
+
ħ
|
1508 |
+
ī
|
1509 |
+
į
|
1510 |
+
İ
|
1511 |
+
ı
|
1512 |
+
Ł
|
1513 |
+
ł
|
1514 |
+
ń
|
1515 |
+
ņ
|
1516 |
+
ň
|
1517 |
+
ŋ
|
1518 |
+
Ō
|
1519 |
+
ō
|
1520 |
+
ő
|
1521 |
+
œ
|
1522 |
+
ř
|
1523 |
+
Ś
|
1524 |
+
ś
|
1525 |
+
Ş
|
1526 |
+
ş
|
1527 |
+
Š
|
1528 |
+
š
|
1529 |
+
Ť
|
1530 |
+
ť
|
1531 |
+
ũ
|
1532 |
+
ū
|
1533 |
+
ź
|
1534 |
+
Ż
|
1535 |
+
ż
|
1536 |
+
Ž
|
1537 |
+
ž
|
1538 |
+
ơ
|
1539 |
+
ư
|
1540 |
+
ǎ
|
1541 |
+
ǐ
|
1542 |
+
ǒ
|
1543 |
+
ǔ
|
1544 |
+
ǚ
|
1545 |
+
ș
|
1546 |
+
ț
|
1547 |
+
ɑ
|
1548 |
+
ɔ
|
1549 |
+
ɕ
|
1550 |
+
ə
|
1551 |
+
ɛ
|
1552 |
+
ɜ
|
1553 |
+
ɡ
|
1554 |
+
ɣ
|
1555 |
+
ɪ
|
1556 |
+
ɫ
|
1557 |
+
ɴ
|
1558 |
+
ɹ
|
1559 |
+
ɾ
|
1560 |
+
ʃ
|
1561 |
+
ʊ
|
1562 |
+
ʌ
|
1563 |
+
ʒ
|
1564 |
+
ʔ
|
1565 |
+
ʰ
|
1566 |
+
ʷ
|
1567 |
+
ʻ
|
1568 |
+
ʾ
|
1569 |
+
ʿ
|
1570 |
+
ˈ
|
1571 |
+
ː
|
1572 |
+
˙
|
1573 |
+
˜
|
1574 |
+
ˢ
|
1575 |
+
́
|
1576 |
+
̅
|
1577 |
+
Α
|
1578 |
+
Β
|
1579 |
+
Δ
|
1580 |
+
Ε
|
1581 |
+
Θ
|
1582 |
+
Κ
|
1583 |
+
Λ
|
1584 |
+
Μ
|
1585 |
+
Ξ
|
1586 |
+
Π
|
1587 |
+
Σ
|
1588 |
+
Τ
|
1589 |
+
Φ
|
1590 |
+
Χ
|
1591 |
+
Ψ
|
1592 |
+
Ω
|
1593 |
+
ά
|
1594 |
+
έ
|
1595 |
+
ή
|
1596 |
+
ί
|
1597 |
+
α
|
1598 |
+
β
|
1599 |
+
γ
|
1600 |
+
δ
|
1601 |
+
ε
|
1602 |
+
ζ
|
1603 |
+
η
|
1604 |
+
θ
|
1605 |
+
ι
|
1606 |
+
κ
|
1607 |
+
λ
|
1608 |
+
μ
|
1609 |
+
ν
|
1610 |
+
ξ
|
1611 |
+
ο
|
1612 |
+
π
|
1613 |
+
ρ
|
1614 |
+
ς
|
1615 |
+
σ
|
1616 |
+
τ
|
1617 |
+
υ
|
1618 |
+
φ
|
1619 |
+
χ
|
1620 |
+
ψ
|
1621 |
+
ω
|
1622 |
+
ϊ
|
1623 |
+
ό
|
1624 |
+
ύ
|
1625 |
+
ώ
|
1626 |
+
ϕ
|
1627 |
+
ϵ
|
1628 |
+
Ё
|
1629 |
+
А
|
1630 |
+
Б
|
1631 |
+
В
|
1632 |
+
Г
|
1633 |
+
Д
|
1634 |
+
Е
|
1635 |
+
Ж
|
1636 |
+
З
|
1637 |
+
И
|
1638 |
+
Й
|
1639 |
+
К
|
1640 |
+
Л
|
1641 |
+
М
|
1642 |
+
Н
|
1643 |
+
О
|
1644 |
+
П
|
1645 |
+
Р
|
1646 |
+
С
|
1647 |
+
Т
|
1648 |
+
У
|
1649 |
+
Ф
|
1650 |
+
Х
|
1651 |
+
Ц
|
1652 |
+
Ч
|
1653 |
+
Ш
|
1654 |
+
Щ
|
1655 |
+
Ы
|
1656 |
+
Ь
|
1657 |
+
Э
|
1658 |
+
Ю
|
1659 |
+
Я
|
1660 |
+
а
|
1661 |
+
б
|
1662 |
+
в
|
1663 |
+
г
|
1664 |
+
д
|
1665 |
+
е
|
1666 |
+
ж
|
1667 |
+
з
|
1668 |
+
и
|
1669 |
+
й
|
1670 |
+
к
|
1671 |
+
л
|
1672 |
+
м
|
1673 |
+
н
|
1674 |
+
о
|
1675 |
+
п
|
1676 |
+
р
|
1677 |
+
с
|
1678 |
+
т
|
1679 |
+
у
|
1680 |
+
ф
|
1681 |
+
х
|
1682 |
+
ц
|
1683 |
+
ч
|
1684 |
+
ш
|
1685 |
+
щ
|
1686 |
+
ъ
|
1687 |
+
ы
|
1688 |
+
ь
|
1689 |
+
э
|
1690 |
+
ю
|
1691 |
+
я
|
1692 |
+
ё
|
1693 |
+
і
|
1694 |
+
ְ
|
1695 |
+
ִ
|
1696 |
+
ֵ
|
1697 |
+
ֶ
|
1698 |
+
ַ
|
1699 |
+
ָ
|
1700 |
+
ֹ
|
1701 |
+
ּ
|
1702 |
+
־
|
1703 |
+
ׁ
|
1704 |
+
א
|
1705 |
+
ב
|
1706 |
+
ג
|
1707 |
+
ד
|
1708 |
+
ה
|
1709 |
+
ו
|
1710 |
+
ז
|
1711 |
+
ח
|
1712 |
+
ט
|
1713 |
+
י
|
1714 |
+
כ
|
1715 |
+
ל
|
1716 |
+
ם
|
1717 |
+
מ
|
1718 |
+
ן
|
1719 |
+
נ
|
1720 |
+
ס
|
1721 |
+
ע
|
1722 |
+
פ
|
1723 |
+
ק
|
1724 |
+
ר
|
1725 |
+
ש
|
1726 |
+
ת
|
1727 |
+
أ
|
1728 |
+
ب
|
1729 |
+
ة
|
1730 |
+
ت
|
1731 |
+
ج
|
1732 |
+
ح
|
1733 |
+
د
|
1734 |
+
ر
|
1735 |
+
ز
|
1736 |
+
س
|
1737 |
+
ص
|
1738 |
+
ط
|
1739 |
+
ع
|
1740 |
+
ق
|
1741 |
+
ك
|
1742 |
+
ل
|
1743 |
+
م
|
1744 |
+
ن
|
1745 |
+
ه
|
1746 |
+
و
|
1747 |
+
ي
|
1748 |
+
َ
|
1749 |
+
ُ
|
1750 |
+
ِ
|
1751 |
+
ْ
|
1752 |
+
ก
|
1753 |
+
ข
|
1754 |
+
ง
|
1755 |
+
จ
|
1756 |
+
ต
|
1757 |
+
ท
|
1758 |
+
น
|
1759 |
+
ป
|
1760 |
+
ย
|
1761 |
+
ร
|
1762 |
+
ว
|
1763 |
+
ส
|
1764 |
+
ห
|
1765 |
+
อ
|
1766 |
+
ฮ
|
1767 |
+
ั
|
1768 |
+
า
|
1769 |
+
ี
|
1770 |
+
ึ
|
1771 |
+
โ
|
1772 |
+
ใ
|
1773 |
+
ไ
|
1774 |
+
่
|
1775 |
+
้
|
1776 |
+
์
|
1777 |
+
ḍ
|
1778 |
+
Ḥ
|
1779 |
+
ḥ
|
1780 |
+
ṁ
|
1781 |
+
ṃ
|
1782 |
+
ṅ
|
1783 |
+
ṇ
|
1784 |
+
Ṛ
|
1785 |
+
ṛ
|
1786 |
+
Ṣ
|
1787 |
+
ṣ
|
1788 |
+
Ṭ
|
1789 |
+
ṭ
|
1790 |
+
ạ
|
1791 |
+
ả
|
1792 |
+
Ấ
|
1793 |
+
ấ
|
1794 |
+
ầ
|
1795 |
+
ậ
|
1796 |
+
ắ
|
1797 |
+
ằ
|
1798 |
+
ẻ
|
1799 |
+
ẽ
|
1800 |
+
ế
|
1801 |
+
ề
|
1802 |
+
ể
|
1803 |
+
ễ
|
1804 |
+
ệ
|
1805 |
+
ị
|
1806 |
+
ọ
|
1807 |
+
ỏ
|
1808 |
+
ố
|
1809 |
+
ồ
|
1810 |
+
ộ
|
1811 |
+
ớ
|
1812 |
+
ờ
|
1813 |
+
ở
|
1814 |
+
ụ
|
1815 |
+
ủ
|
1816 |
+
ứ
|
1817 |
+
ữ
|
1818 |
+
ἀ
|
1819 |
+
ἁ
|
1820 |
+
Ἀ
|
1821 |
+
ἐ
|
1822 |
+
ἔ
|
1823 |
+
ἰ
|
1824 |
+
ἱ
|
1825 |
+
ὀ
|
1826 |
+
ὁ
|
1827 |
+
ὐ
|
1828 |
+
ὲ
|
1829 |
+
ὸ
|
1830 |
+
ᾶ
|
1831 |
+
᾽
|
1832 |
+
ῆ
|
1833 |
+
ῇ
|
1834 |
+
ῶ
|
1835 |
+
|
1836 |
+
‑
|
1837 |
+
‒
|
1838 |
+
–
|
1839 |
+
—
|
1840 |
+
―
|
1841 |
+
‖
|
1842 |
+
†
|
1843 |
+
‡
|
1844 |
+
•
|
1845 |
+
…
|
1846 |
+
‧
|
1847 |
+
|
1848 |
+
′
|
1849 |
+
″
|
1850 |
+
⁄
|
1851 |
+
|
1852 |
+
⁰
|
1853 |
+
⁴
|
1854 |
+
⁵
|
1855 |
+
⁶
|
1856 |
+
⁷
|
1857 |
+
⁸
|
1858 |
+
⁹
|
1859 |
+
₁
|
1860 |
+
₂
|
1861 |
+
₃
|
1862 |
+
€
|
1863 |
+
₱
|
1864 |
+
₹
|
1865 |
+
₽
|
1866 |
+
℃
|
1867 |
+
ℏ
|
1868 |
+
ℓ
|
1869 |
+
№
|
1870 |
+
ℝ
|
1871 |
+
™
|
1872 |
+
⅓
|
1873 |
+
⅔
|
1874 |
+
⅛
|
1875 |
+
→
|
1876 |
+
∂
|
1877 |
+
∈
|
1878 |
+
∑
|
1879 |
+
−
|
1880 |
+
∗
|
1881 |
+
√
|
1882 |
+
∞
|
1883 |
+
∫
|
1884 |
+
≈
|
1885 |
+
≠
|
1886 |
+
≡
|
1887 |
+
≤
|
1888 |
+
≥
|
1889 |
+
⋅
|
1890 |
+
⋯
|
1891 |
+
█
|
1892 |
+
♪
|
1893 |
+
⟨
|
1894 |
+
⟩
|
1895 |
+
、
|
1896 |
+
。
|
1897 |
+
《
|
1898 |
+
》
|
1899 |
+
「
|
1900 |
+
」
|
1901 |
+
【
|
1902 |
+
】
|
1903 |
+
あ
|
1904 |
+
う
|
1905 |
+
え
|
1906 |
+
お
|
1907 |
+
か
|
1908 |
+
が
|
1909 |
+
き
|
1910 |
+
ぎ
|
1911 |
+
く
|
1912 |
+
ぐ
|
1913 |
+
け
|
1914 |
+
げ
|
1915 |
+
こ
|
1916 |
+
ご
|
1917 |
+
さ
|
1918 |
+
し
|
1919 |
+
じ
|
1920 |
+
す
|
1921 |
+
ず
|
1922 |
+
せ
|
1923 |
+
ぜ
|
1924 |
+
そ
|
1925 |
+
ぞ
|
1926 |
+
た
|
1927 |
+
だ
|
1928 |
+
ち
|
1929 |
+
っ
|
1930 |
+
つ
|
1931 |
+
で
|
1932 |
+
と
|
1933 |
+
ど
|
1934 |
+
な
|
1935 |
+
に
|
1936 |
+
ね
|
1937 |
+
の
|
1938 |
+
は
|
1939 |
+
ば
|
1940 |
+
ひ
|
1941 |
+
ぶ
|
1942 |
+
へ
|
1943 |
+
べ
|
1944 |
+
ま
|
1945 |
+
み
|
1946 |
+
む
|
1947 |
+
め
|
1948 |
+
も
|
1949 |
+
ゃ
|
1950 |
+
や
|
1951 |
+
ゆ
|
1952 |
+
ょ
|
1953 |
+
よ
|
1954 |
+
ら
|
1955 |
+
り
|
1956 |
+
る
|
1957 |
+
れ
|
1958 |
+
ろ
|
1959 |
+
わ
|
1960 |
+
を
|
1961 |
+
ん
|
1962 |
+
ァ
|
1963 |
+
ア
|
1964 |
+
ィ
|
1965 |
+
イ
|
1966 |
+
ウ
|
1967 |
+
ェ
|
1968 |
+
エ
|
1969 |
+
オ
|
1970 |
+
カ
|
1971 |
+
ガ
|
1972 |
+
キ
|
1973 |
+
ク
|
1974 |
+
ケ
|
1975 |
+
ゲ
|
1976 |
+
コ
|
1977 |
+
ゴ
|
1978 |
+
サ
|
1979 |
+
ザ
|
1980 |
+
シ
|
1981 |
+
ジ
|
1982 |
+
ス
|
1983 |
+
ズ
|
1984 |
+
セ
|
1985 |
+
ゾ
|
1986 |
+
タ
|
1987 |
+
ダ
|
1988 |
+
チ
|
1989 |
+
ッ
|
1990 |
+
ツ
|
1991 |
+
テ
|
1992 |
+
デ
|
1993 |
+
ト
|
1994 |
+
ド
|
1995 |
+
ナ
|
1996 |
+
ニ
|
1997 |
+
ネ
|
1998 |
+
ノ
|
1999 |
+
バ
|
2000 |
+
パ
|
2001 |
+
ビ
|
2002 |
+
ピ
|
2003 |
+
フ
|
2004 |
+
プ
|
2005 |
+
ヘ
|
2006 |
+
ベ
|
2007 |
+
ペ
|
2008 |
+
ホ
|
2009 |
+
ボ
|
2010 |
+
ポ
|
2011 |
+
マ
|
2012 |
+
ミ
|
2013 |
+
ム
|
2014 |
+
メ
|
2015 |
+
モ
|
2016 |
+
ャ
|
2017 |
+
ヤ
|
2018 |
+
ュ
|
2019 |
+
ユ
|
2020 |
+
ョ
|
2021 |
+
ヨ
|
2022 |
+
ラ
|
2023 |
+
リ
|
2024 |
+
ル
|
2025 |
+
レ
|
2026 |
+
ロ
|
2027 |
+
ワ
|
2028 |
+
ン
|
2029 |
+
・
|
2030 |
+
ー
|
2031 |
+
ㄋ
|
2032 |
+
ㄍ
|
2033 |
+
ㄎ
|
2034 |
+
ㄏ
|
2035 |
+
ㄓ
|
2036 |
+
ㄕ
|
2037 |
+
ㄚ
|
2038 |
+
ㄜ
|
2039 |
+
ㄟ
|
2040 |
+
ㄤ
|
2041 |
+
ㄥ
|
2042 |
+
ㄧ
|
2043 |
+
ㄱ
|
2044 |
+
ㄴ
|
2045 |
+
ㄷ
|
2046 |
+
ㄹ
|
2047 |
+
ㅁ
|
2048 |
+
ㅂ
|
2049 |
+
ㅅ
|
2050 |
+
ㅈ
|
2051 |
+
ㅍ
|
2052 |
+
ㅎ
|
2053 |
+
ㅏ
|
2054 |
+
ㅓ
|
2055 |
+
ㅗ
|
2056 |
+
ㅜ
|
2057 |
+
ㅡ
|
2058 |
+
ㅣ
|
2059 |
+
㗎
|
2060 |
+
가
|
2061 |
+
각
|
2062 |
+
간
|
2063 |
+
갈
|
2064 |
+
감
|
2065 |
+
갑
|
2066 |
+
갓
|
2067 |
+
갔
|
2068 |
+
강
|
2069 |
+
같
|
2070 |
+
개
|
2071 |
+
거
|
2072 |
+
건
|
2073 |
+
걸
|
2074 |
+
겁
|
2075 |
+
것
|
2076 |
+
겉
|
2077 |
+
게
|
2078 |
+
겠
|
2079 |
+
겨
|
2080 |
+
결
|
2081 |
+
겼
|
2082 |
+
경
|
2083 |
+
계
|
2084 |
+
고
|
2085 |
+
곤
|
2086 |
+
골
|
2087 |
+
곱
|
2088 |
+
공
|
2089 |
+
과
|
2090 |
+
관
|
2091 |
+
광
|
2092 |
+
교
|
2093 |
+
구
|
2094 |
+
국
|
2095 |
+
굴
|
2096 |
+
귀
|
2097 |
+
귄
|
2098 |
+
그
|
2099 |
+
근
|
2100 |
+
글
|
2101 |
+
금
|
2102 |
+
기
|
2103 |
+
긴
|
2104 |
+
길
|
2105 |
+
까
|
2106 |
+
깍
|
2107 |
+
깔
|
2108 |
+
깜
|
2109 |
+
깨
|
2110 |
+
께
|
2111 |
+
꼬
|
2112 |
+
꼭
|
2113 |
+
꽃
|
2114 |
+
꾸
|
2115 |
+
꿔
|
2116 |
+
끔
|
2117 |
+
끗
|
2118 |
+
끝
|
2119 |
+
끼
|
2120 |
+
나
|
2121 |
+
난
|
2122 |
+
날
|
2123 |
+
남
|
2124 |
+
납
|
2125 |
+
내
|
2126 |
+
냐
|
2127 |
+
냥
|
2128 |
+
너
|
2129 |
+
넘
|
2130 |
+
넣
|
2131 |
+
네
|
2132 |
+
녁
|
2133 |
+
년
|
2134 |
+
녕
|
2135 |
+
노
|
2136 |
+
녹
|
2137 |
+
놀
|
2138 |
+
누
|
2139 |
+
눈
|
2140 |
+
느
|
2141 |
+
는
|
2142 |
+
늘
|
2143 |
+
니
|
2144 |
+
님
|
2145 |
+
닙
|
2146 |
+
다
|
2147 |
+
닥
|
2148 |
+
단
|
2149 |
+
달
|
2150 |
+
닭
|
2151 |
+
당
|
2152 |
+
대
|
2153 |
+
더
|
2154 |
+
덕
|
2155 |
+
던
|
2156 |
+
덥
|
2157 |
+
데
|
2158 |
+
도
|
2159 |
+
독
|
2160 |
+
동
|
2161 |
+
돼
|
2162 |
+
됐
|
2163 |
+
되
|
2164 |
+
된
|
2165 |
+
될
|
2166 |
+
두
|
2167 |
+
둑
|
2168 |
+
둥
|
2169 |
+
드
|
2170 |
+
들
|
2171 |
+
등
|
2172 |
+
디
|
2173 |
+
따
|
2174 |
+
딱
|
2175 |
+
딸
|
2176 |
+
땅
|
2177 |
+
때
|
2178 |
+
떤
|
2179 |
+
떨
|
2180 |
+
떻
|
2181 |
+
또
|
2182 |
+
똑
|
2183 |
+
뚱
|
2184 |
+
뛰
|
2185 |
+
뜻
|
2186 |
+
띠
|
2187 |
+
라
|
2188 |
+
락
|
2189 |
+
란
|
2190 |
+
람
|
2191 |
+
랍
|
2192 |
+
랑
|
2193 |
+
래
|
2194 |
+
랜
|
2195 |
+
러
|
2196 |
+
런
|
2197 |
+
럼
|
2198 |
+
렇
|
2199 |
+
레
|
2200 |
+
려
|
2201 |
+
력
|
2202 |
+
렵
|
2203 |
+
렸
|
2204 |
+
로
|
2205 |
+
록
|
2206 |
+
롬
|
2207 |
+
루
|
2208 |
+
르
|
2209 |
+
른
|
2210 |
+
를
|
2211 |
+
름
|
2212 |
+
릉
|
2213 |
+
리
|
2214 |
+
릴
|
2215 |
+
림
|
2216 |
+
마
|
2217 |
+
막
|
2218 |
+
만
|
2219 |
+
많
|
2220 |
+
말
|
2221 |
+
맑
|
2222 |
+
맙
|
2223 |
+
맛
|
2224 |
+
매
|
2225 |
+
머
|
2226 |
+
먹
|
2227 |
+
멍
|
2228 |
+
메
|
2229 |
+
면
|
2230 |
+
명
|
2231 |
+
몇
|
2232 |
+
모
|
2233 |
+
목
|
2234 |
+
몸
|
2235 |
+
못
|
2236 |
+
무
|
2237 |
+
문
|
2238 |
+
물
|
2239 |
+
뭐
|
2240 |
+
뭘
|
2241 |
+
미
|
2242 |
+
민
|
2243 |
+
밌
|
2244 |
+
밑
|
2245 |
+
바
|
2246 |
+
박
|
2247 |
+
밖
|
2248 |
+
반
|
2249 |
+
받
|
2250 |
+
발
|
2251 |
+
밤
|
2252 |
+
밥
|
2253 |
+
방
|
2254 |
+
배
|
2255 |
+
백
|
2256 |
+
밸
|
2257 |
+
뱀
|
2258 |
+
버
|
2259 |
+
번
|
2260 |
+
벌
|
2261 |
+
벚
|
2262 |
+
베
|
2263 |
+
벼
|
2264 |
+
벽
|
2265 |
+
별
|
2266 |
+
병
|
2267 |
+
보
|
2268 |
+
복
|
2269 |
+
본
|
2270 |
+
볼
|
2271 |
+
봐
|
2272 |
+
봤
|
2273 |
+
부
|
2274 |
+
분
|
2275 |
+
불
|
2276 |
+
비
|
2277 |
+
빔
|
2278 |
+
빛
|
2279 |
+
빠
|
2280 |
+
빨
|
2281 |
+
뼈
|
2282 |
+
뽀
|
2283 |
+
뿅
|
2284 |
+
쁘
|
2285 |
+
사
|
2286 |
+
산
|
2287 |
+
살
|
2288 |
+
삼
|
2289 |
+
샀
|
2290 |
+
상
|
2291 |
+
새
|
2292 |
+
색
|
2293 |
+
생
|
2294 |
+
서
|
2295 |
+
선
|
2296 |
+
설
|
2297 |
+
섭
|
2298 |
+
섰
|
2299 |
+
성
|
2300 |
+
세
|
2301 |
+
셔
|
2302 |
+
션
|
2303 |
+
셨
|
2304 |
+
소
|
2305 |
+
속
|
2306 |
+
손
|
2307 |
+
송
|
2308 |
+
수
|
2309 |
+
숙
|
2310 |
+
순
|
2311 |
+
술
|
2312 |
+
숫
|
2313 |
+
숭
|
2314 |
+
숲
|
2315 |
+
쉬
|
2316 |
+
쉽
|
2317 |
+
스
|
2318 |
+
슨
|
2319 |
+
습
|
2320 |
+
슷
|
2321 |
+
시
|
2322 |
+
식
|
2323 |
+
신
|
2324 |
+
실
|
2325 |
+
싫
|
2326 |
+
심
|
2327 |
+
십
|
2328 |
+
싶
|
2329 |
+
싸
|
2330 |
+
써
|
2331 |
+
쓰
|
2332 |
+
쓴
|
2333 |
+
씌
|
2334 |
+
씨
|
2335 |
+
씩
|
2336 |
+
씬
|
2337 |
+
아
|
2338 |
+
악
|
2339 |
+
안
|
2340 |
+
않
|
2341 |
+
알
|
2342 |
+
야
|
2343 |
+
약
|
2344 |
+
얀
|
2345 |
+
양
|
2346 |
+
얘
|
2347 |
+
어
|
2348 |
+
언
|
2349 |
+
얼
|
2350 |
+
엄
|
2351 |
+
업
|
2352 |
+
없
|
2353 |
+
었
|
2354 |
+
엉
|
2355 |
+
에
|
2356 |
+
여
|
2357 |
+
역
|
2358 |
+
연
|
2359 |
+
염
|
2360 |
+
엽
|
2361 |
+
영
|
2362 |
+
옆
|
2363 |
+
예
|
2364 |
+
옛
|
2365 |
+
오
|
2366 |
+
온
|
2367 |
+
올
|
2368 |
+
옷
|
2369 |
+
옹
|
2370 |
+
와
|
2371 |
+
왔
|
2372 |
+
왜
|
2373 |
+
요
|
2374 |
+
욕
|
2375 |
+
용
|
2376 |
+
우
|
2377 |
+
운
|
2378 |
+
울
|
2379 |
+
웃
|
2380 |
+
워
|
2381 |
+
원
|
2382 |
+
월
|
2383 |
+
웠
|
2384 |
+
위
|
2385 |
+
윙
|
2386 |
+
유
|
2387 |
+
육
|
2388 |
+
윤
|
2389 |
+
으
|
2390 |
+
은
|
2391 |
+
을
|
2392 |
+
음
|
2393 |
+
응
|
2394 |
+
의
|
2395 |
+
이
|
2396 |
+
익
|
2397 |
+
인
|
2398 |
+
일
|
2399 |
+
읽
|
2400 |
+
임
|
2401 |
+
입
|
2402 |
+
있
|
2403 |
+
자
|
2404 |
+
작
|
2405 |
+
잔
|
2406 |
+
잖
|
2407 |
+
잘
|
2408 |
+
잡
|
2409 |
+
잤
|
2410 |
+
장
|
2411 |
+
재
|
2412 |
+
저
|
2413 |
+
전
|
2414 |
+
점
|
2415 |
+
정
|
2416 |
+
제
|
2417 |
+
져
|
2418 |
+
졌
|
2419 |
+
조
|
2420 |
+
족
|
2421 |
+
좀
|
2422 |
+
종
|
2423 |
+
좋
|
2424 |
+
죠
|
2425 |
+
주
|
2426 |
+
준
|
2427 |
+
줄
|
2428 |
+
중
|
2429 |
+
줘
|
2430 |
+
즈
|
2431 |
+
즐
|
2432 |
+
즘
|
2433 |
+
지
|
2434 |
+
진
|
2435 |
+
집
|
2436 |
+
짜
|
2437 |
+
짝
|
2438 |
+
쩌
|
2439 |
+
쪼
|
2440 |
+
쪽
|
2441 |
+
쫌
|
2442 |
+
쭈
|
2443 |
+
쯔
|
2444 |
+
찌
|
2445 |
+
찍
|
2446 |
+
차
|
2447 |
+
착
|
2448 |
+
찾
|
2449 |
+
책
|
2450 |
+
처
|
2451 |
+
천
|
2452 |
+
철
|
2453 |
+
체
|
2454 |
+
쳐
|
2455 |
+
쳤
|
2456 |
+
초
|
2457 |
+
촌
|
2458 |
+
추
|
2459 |
+
출
|
2460 |
+
춤
|
2461 |
+
춥
|
2462 |
+
춰
|
2463 |
+
치
|
2464 |
+
친
|
2465 |
+
칠
|
2466 |
+
침
|
2467 |
+
칩
|
2468 |
+
칼
|
2469 |
+
커
|
2470 |
+
켓
|
2471 |
+
코
|
2472 |
+
콩
|
2473 |
+
쿠
|
2474 |
+
퀴
|
2475 |
+
크
|
2476 |
+
큰
|
2477 |
+
큽
|
2478 |
+
키
|
2479 |
+
킨
|
2480 |
+
타
|
2481 |
+
태
|
2482 |
+
터
|
2483 |
+
턴
|
2484 |
+
털
|
2485 |
+
테
|
2486 |
+
토
|
2487 |
+
통
|
2488 |
+
투
|
2489 |
+
트
|
2490 |
+
특
|
2491 |
+
튼
|
2492 |
+
틀
|
2493 |
+
티
|
2494 |
+
팀
|
2495 |
+
파
|
2496 |
+
팔
|
2497 |
+
패
|
2498 |
+
페
|
2499 |
+
펜
|
2500 |
+
펭
|
2501 |
+
평
|
2502 |
+
포
|
2503 |
+
폭
|
2504 |
+
표
|
2505 |
+
품
|
2506 |
+
풍
|
2507 |
+
프
|
2508 |
+
플
|
2509 |
+
피
|
2510 |
+
필
|
2511 |
+
하
|
2512 |
+
학
|
2513 |
+
한
|
2514 |
+
할
|
2515 |
+
함
|
2516 |
+
합
|
2517 |
+
항
|
2518 |
+
해
|
2519 |
+
햇
|
2520 |
+
했
|
2521 |
+
행
|
2522 |
+
허
|
2523 |
+
험
|
2524 |
+
형
|
2525 |
+
혜
|
2526 |
+
호
|
2527 |
+
혼
|
2528 |
+
홀
|
2529 |
+
화
|
2530 |
+
회
|
2531 |
+
획
|
2532 |
+
후
|
2533 |
+
휴
|
2534 |
+
흐
|
2535 |
+
흔
|
2536 |
+
희
|
2537 |
+
히
|
2538 |
+
힘
|
2539 |
+
ﷺ
|
2540 |
+
ﷻ
|
2541 |
+
!
|
2542 |
+
,
|
2543 |
+
?
|
2544 |
+
�
|
2545 |
+
𠮶
|
src/f5_tts/infer/infer_cli.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import codecs
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
from pathlib import Path
|
6 |
+
from importlib.resources import files
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import soundfile as sf
|
10 |
+
import tomli
|
11 |
+
from cached_path import cached_path
|
12 |
+
|
13 |
+
from f5_tts.model import DiT, UNetT
|
14 |
+
from f5_tts.infer.utils_infer import (
|
15 |
+
load_vocoder,
|
16 |
+
load_model,
|
17 |
+
preprocess_ref_audio_text,
|
18 |
+
infer_process,
|
19 |
+
remove_silence_for_generated_wav,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
parser = argparse.ArgumentParser(
|
24 |
+
prog="python3 infer-cli.py",
|
25 |
+
description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
|
26 |
+
epilog="Specify options above to override one or more settings from config.",
|
27 |
+
)
|
28 |
+
parser.add_argument(
|
29 |
+
"-c",
|
30 |
+
"--config",
|
31 |
+
help="Configuration file. Default=infer/examples/basic/basic.toml",
|
32 |
+
default=os.path.join(files("f5_tts").joinpath("infer/examples/basic"), "basic.toml"),
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"-m",
|
36 |
+
"--model",
|
37 |
+
help="F5-TTS | E2-TTS",
|
38 |
+
)
|
39 |
+
parser.add_argument(
|
40 |
+
"-p",
|
41 |
+
"--ckpt_file",
|
42 |
+
help="The Checkpoint .pt",
|
43 |
+
)
|
44 |
+
parser.add_argument(
|
45 |
+
"-v",
|
46 |
+
"--vocab_file",
|
47 |
+
help="The vocab .txt",
|
48 |
+
)
|
49 |
+
parser.add_argument("-r", "--ref_audio", type=str, help="Reference audio file < 15 seconds.")
|
50 |
+
parser.add_argument("-s", "--ref_text", type=str, default="666", help="Subtitle for the reference audio.")
|
51 |
+
parser.add_argument(
|
52 |
+
"-t",
|
53 |
+
"--gen_text",
|
54 |
+
type=str,
|
55 |
+
help="Text to generate.",
|
56 |
+
)
|
57 |
+
parser.add_argument(
|
58 |
+
"-f",
|
59 |
+
"--gen_file",
|
60 |
+
type=str,
|
61 |
+
help="File with text to generate. Ignores --text",
|
62 |
+
)
|
63 |
+
parser.add_argument(
|
64 |
+
"-o",
|
65 |
+
"--output_dir",
|
66 |
+
type=str,
|
67 |
+
help="Path to output folder..",
|
68 |
+
)
|
69 |
+
parser.add_argument(
|
70 |
+
"--remove_silence",
|
71 |
+
help="Remove silence.",
|
72 |
+
)
|
73 |
+
parser.add_argument(
|
74 |
+
"--load_vocoder_from_local",
|
75 |
+
action="store_true",
|
76 |
+
help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
|
77 |
+
)
|
78 |
+
parser.add_argument(
|
79 |
+
"--speed",
|
80 |
+
type=float,
|
81 |
+
default=1.0,
|
82 |
+
help="Adjust the speed of the audio generation (default: 1.0)",
|
83 |
+
)
|
84 |
+
args = parser.parse_args()
|
85 |
+
|
86 |
+
config = tomli.load(open(args.config, "rb"))
|
87 |
+
|
88 |
+
ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
|
89 |
+
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
|
90 |
+
gen_text = args.gen_text if args.gen_text else config["gen_text"]
|
91 |
+
gen_file = args.gen_file if args.gen_file else config["gen_file"]
|
92 |
+
|
93 |
+
# patches for pip pkg user
|
94 |
+
if "infer/examples/" in ref_audio:
|
95 |
+
ref_audio = str(files("f5_tts").joinpath(f"{ref_audio}"))
|
96 |
+
if "infer/examples/" in gen_file:
|
97 |
+
gen_file = str(files("f5_tts").joinpath(f"{gen_file}"))
|
98 |
+
if "voices" in config:
|
99 |
+
for voice in config["voices"]:
|
100 |
+
voice_ref_audio = config["voices"][voice]["ref_audio"]
|
101 |
+
if "infer/examples/" in voice_ref_audio:
|
102 |
+
config["voices"][voice]["ref_audio"] = str(files("f5_tts").joinpath(f"{voice_ref_audio}"))
|
103 |
+
|
104 |
+
if gen_file:
|
105 |
+
gen_text = codecs.open(gen_file, "r", "utf-8").read()
|
106 |
+
output_dir = args.output_dir if args.output_dir else config["output_dir"]
|
107 |
+
model = args.model if args.model else config["model"]
|
108 |
+
ckpt_file = args.ckpt_file if args.ckpt_file else ""
|
109 |
+
vocab_file = args.vocab_file if args.vocab_file else ""
|
110 |
+
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
|
111 |
+
speed = args.speed
|
112 |
+
wave_path = Path(output_dir) / "infer_cli_out.wav"
|
113 |
+
# spectrogram_path = Path(output_dir) / "infer_cli_out.png"
|
114 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
115 |
+
|
116 |
+
vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)
|
117 |
+
|
118 |
+
|
119 |
+
# load models
|
120 |
+
if model == "F5-TTS":
|
121 |
+
model_cls = DiT
|
122 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
123 |
+
if ckpt_file == "":
|
124 |
+
repo_name = "F5-TTS"
|
125 |
+
exp_name = "F5TTS_Base"
|
126 |
+
ckpt_step = 1200000
|
127 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
128 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
129 |
+
|
130 |
+
elif model == "E2-TTS":
|
131 |
+
model_cls = UNetT
|
132 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
133 |
+
if ckpt_file == "":
|
134 |
+
repo_name = "E2-TTS"
|
135 |
+
exp_name = "E2TTS_Base"
|
136 |
+
ckpt_step = 1200000
|
137 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
138 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
139 |
+
|
140 |
+
print(f"Using {model}...")
|
141 |
+
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)
|
142 |
+
|
143 |
+
|
144 |
+
def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence, speed):
|
145 |
+
main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
|
146 |
+
if "voices" not in config:
|
147 |
+
voices = {"main": main_voice}
|
148 |
+
else:
|
149 |
+
voices = config["voices"]
|
150 |
+
voices["main"] = main_voice
|
151 |
+
for voice in voices:
|
152 |
+
voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
|
153 |
+
voices[voice]["ref_audio"], voices[voice]["ref_text"]
|
154 |
+
)
|
155 |
+
print("Voice:", voice)
|
156 |
+
print("Ref_audio:", voices[voice]["ref_audio"])
|
157 |
+
print("Ref_text:", voices[voice]["ref_text"])
|
158 |
+
|
159 |
+
generated_audio_segments = []
|
160 |
+
reg1 = r"(?=\[\w+\])"
|
161 |
+
chunks = re.split(reg1, text_gen)
|
162 |
+
reg2 = r"\[(\w+)\]"
|
163 |
+
for text in chunks:
|
164 |
+
match = re.match(reg2, text)
|
165 |
+
if match:
|
166 |
+
voice = match[1]
|
167 |
+
else:
|
168 |
+
print("No voice tag found, using main.")
|
169 |
+
voice = "main"
|
170 |
+
if voice not in voices:
|
171 |
+
print(f"Voice {voice} not found, using main.")
|
172 |
+
voice = "main"
|
173 |
+
text = re.sub(reg2, "", text)
|
174 |
+
gen_text = text.strip()
|
175 |
+
ref_audio = voices[voice]["ref_audio"]
|
176 |
+
ref_text = voices[voice]["ref_text"]
|
177 |
+
print(f"Voice: {voice}")
|
178 |
+
audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj, speed=speed)
|
179 |
+
generated_audio_segments.append(audio)
|
180 |
+
|
181 |
+
if generated_audio_segments:
|
182 |
+
final_wave = np.concatenate(generated_audio_segments)
|
183 |
+
|
184 |
+
if not os.path.exists(output_dir):
|
185 |
+
os.makedirs(output_dir)
|
186 |
+
|
187 |
+
with open(wave_path, "wb") as f:
|
188 |
+
sf.write(f.name, final_wave, final_sample_rate)
|
189 |
+
# Remove silence
|
190 |
+
if remove_silence:
|
191 |
+
remove_silence_for_generated_wav(f.name)
|
192 |
+
print(f.name)
|
193 |
+
|
194 |
+
|
195 |
+
def main():
|
196 |
+
main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence, speed)
|
197 |
+
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
main()
|
src/f5_tts/infer/infer_gradio.py
ADDED
@@ -0,0 +1,729 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ruff: noqa: E402
|
2 |
+
# Above allows ruff to ignore E402: module level import not at top of file
|
3 |
+
|
4 |
+
import re
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
import click
|
8 |
+
import gradio as gr
|
9 |
+
import numpy as np
|
10 |
+
import soundfile as sf
|
11 |
+
import torchaudio
|
12 |
+
from cached_path import cached_path
|
13 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
import spaces
|
17 |
+
|
18 |
+
USING_SPACES = True
|
19 |
+
except ImportError:
|
20 |
+
USING_SPACES = False
|
21 |
+
|
22 |
+
|
23 |
+
def gpu_decorator(func):
|
24 |
+
if USING_SPACES:
|
25 |
+
return spaces.GPU(func)
|
26 |
+
else:
|
27 |
+
return func
|
28 |
+
|
29 |
+
|
30 |
+
from f5_tts.model import DiT, UNetT
|
31 |
+
from f5_tts.infer.utils_infer import (
|
32 |
+
load_vocoder,
|
33 |
+
load_model,
|
34 |
+
preprocess_ref_audio_text,
|
35 |
+
infer_process,
|
36 |
+
remove_silence_for_generated_wav,
|
37 |
+
save_spectrogram,
|
38 |
+
)
|
39 |
+
|
40 |
+
vocos = load_vocoder()
|
41 |
+
|
42 |
+
|
43 |
+
# load models
|
44 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
45 |
+
F5TTS_ema_model = load_model(
|
46 |
+
DiT, F5TTS_model_cfg, str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))
|
47 |
+
)
|
48 |
+
|
49 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
50 |
+
E2TTS_ema_model = load_model(
|
51 |
+
UNetT, E2TTS_model_cfg, str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))
|
52 |
+
)
|
53 |
+
|
54 |
+
chat_model_state = None
|
55 |
+
chat_tokenizer_state = None
|
56 |
+
|
57 |
+
|
58 |
+
@gpu_decorator
|
59 |
+
def generate_response(messages, model, tokenizer):
|
60 |
+
"""Generate response using Qwen"""
|
61 |
+
text = tokenizer.apply_chat_template(
|
62 |
+
messages,
|
63 |
+
tokenize=False,
|
64 |
+
add_generation_prompt=True,
|
65 |
+
)
|
66 |
+
|
67 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
68 |
+
generated_ids = model.generate(
|
69 |
+
**model_inputs,
|
70 |
+
max_new_tokens=512,
|
71 |
+
temperature=0.7,
|
72 |
+
top_p=0.95,
|
73 |
+
)
|
74 |
+
|
75 |
+
generated_ids = [
|
76 |
+
output_ids[len(input_ids) :] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
77 |
+
]
|
78 |
+
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
79 |
+
|
80 |
+
|
81 |
+
@gpu_decorator
|
82 |
+
def infer(
|
83 |
+
ref_audio_orig, ref_text, gen_text, model, remove_silence, cross_fade_duration=0.15, speed=1, show_info=gr.Info
|
84 |
+
):
|
85 |
+
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
86 |
+
|
87 |
+
if model == "F5-TTS":
|
88 |
+
ema_model = F5TTS_ema_model
|
89 |
+
elif model == "E2-TTS":
|
90 |
+
ema_model = E2TTS_ema_model
|
91 |
+
|
92 |
+
final_wave, final_sample_rate, combined_spectrogram = infer_process(
|
93 |
+
ref_audio,
|
94 |
+
ref_text,
|
95 |
+
gen_text,
|
96 |
+
ema_model,
|
97 |
+
cross_fade_duration=cross_fade_duration,
|
98 |
+
speed=speed,
|
99 |
+
show_info=show_info,
|
100 |
+
progress=gr.Progress(),
|
101 |
+
)
|
102 |
+
|
103 |
+
# Remove silence
|
104 |
+
if remove_silence:
|
105 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
106 |
+
sf.write(f.name, final_wave, final_sample_rate)
|
107 |
+
remove_silence_for_generated_wav(f.name)
|
108 |
+
final_wave, _ = torchaudio.load(f.name)
|
109 |
+
final_wave = final_wave.squeeze().cpu().numpy()
|
110 |
+
|
111 |
+
# Save the spectrogram
|
112 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram:
|
113 |
+
spectrogram_path = tmp_spectrogram.name
|
114 |
+
save_spectrogram(combined_spectrogram, spectrogram_path)
|
115 |
+
|
116 |
+
return (final_sample_rate, final_wave), spectrogram_path
|
117 |
+
|
118 |
+
|
119 |
+
with gr.Blocks() as app_credits:
|
120 |
+
gr.Markdown("""
|
121 |
+
# Credits
|
122 |
+
|
123 |
+
* [mrfakename](https://github.com/fakerybakery) for the original [online demo](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
|
124 |
+
* [RootingInLoad](https://github.com/RootingInLoad) for initial chunk generation and podcast app exploration
|
125 |
+
* [jpgallegoar](https://github.com/jpgallegoar) for multiple speech-type generation & voice chat
|
126 |
+
""")
|
127 |
+
with gr.Blocks() as app_tts:
|
128 |
+
gr.Markdown("# Batched TTS")
|
129 |
+
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
130 |
+
gen_text_input = gr.Textbox(label="Text to Generate", lines=10)
|
131 |
+
model_choice = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
|
132 |
+
generate_btn = gr.Button("Synthesize", variant="primary")
|
133 |
+
with gr.Accordion("Advanced Settings", open=False):
|
134 |
+
ref_text_input = gr.Textbox(
|
135 |
+
label="Reference Text",
|
136 |
+
info="Leave blank to automatically transcribe the reference audio. If you enter text it will override automatic transcription.",
|
137 |
+
lines=2,
|
138 |
+
)
|
139 |
+
remove_silence = gr.Checkbox(
|
140 |
+
label="Remove Silences",
|
141 |
+
info="The model tends to produce silences, especially on longer audio. We can manually remove silences if needed. Note that this is an experimental feature and may produce strange results. This will also increase generation time.",
|
142 |
+
value=False,
|
143 |
+
)
|
144 |
+
speed_slider = gr.Slider(
|
145 |
+
label="Speed",
|
146 |
+
minimum=0.3,
|
147 |
+
maximum=2.0,
|
148 |
+
value=1.0,
|
149 |
+
step=0.1,
|
150 |
+
info="Adjust the speed of the audio.",
|
151 |
+
)
|
152 |
+
cross_fade_duration_slider = gr.Slider(
|
153 |
+
label="Cross-Fade Duration (s)",
|
154 |
+
minimum=0.0,
|
155 |
+
maximum=1.0,
|
156 |
+
value=0.15,
|
157 |
+
step=0.01,
|
158 |
+
info="Set the duration of the cross-fade between audio clips.",
|
159 |
+
)
|
160 |
+
|
161 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
162 |
+
spectrogram_output = gr.Image(label="Spectrogram")
|
163 |
+
|
164 |
+
generate_btn.click(
|
165 |
+
infer,
|
166 |
+
inputs=[
|
167 |
+
ref_audio_input,
|
168 |
+
ref_text_input,
|
169 |
+
gen_text_input,
|
170 |
+
model_choice,
|
171 |
+
remove_silence,
|
172 |
+
cross_fade_duration_slider,
|
173 |
+
speed_slider,
|
174 |
+
],
|
175 |
+
outputs=[audio_output, spectrogram_output],
|
176 |
+
)
|
177 |
+
|
178 |
+
|
179 |
+
def parse_speechtypes_text(gen_text):
|
180 |
+
# Pattern to find {speechtype}
|
181 |
+
pattern = r"\{(.*?)\}"
|
182 |
+
|
183 |
+
# Split the text by the pattern
|
184 |
+
tokens = re.split(pattern, gen_text)
|
185 |
+
|
186 |
+
segments = []
|
187 |
+
|
188 |
+
current_style = "Regular"
|
189 |
+
|
190 |
+
for i in range(len(tokens)):
|
191 |
+
if i % 2 == 0:
|
192 |
+
# This is text
|
193 |
+
text = tokens[i].strip()
|
194 |
+
if text:
|
195 |
+
segments.append({"style": current_style, "text": text})
|
196 |
+
else:
|
197 |
+
# This is style
|
198 |
+
style = tokens[i].strip()
|
199 |
+
current_style = style
|
200 |
+
|
201 |
+
return segments
|
202 |
+
|
203 |
+
|
204 |
+
with gr.Blocks() as app_multistyle:
|
205 |
+
# New section for multistyle generation
|
206 |
+
gr.Markdown(
|
207 |
+
"""
|
208 |
+
# Multiple Speech-Type Generation
|
209 |
+
|
210 |
+
This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use the regular speech type. The current speech type will be used until the next speech type is specified.
|
211 |
+
"""
|
212 |
+
)
|
213 |
+
|
214 |
+
with gr.Row():
|
215 |
+
gr.Markdown(
|
216 |
+
"""
|
217 |
+
**Example Input:**
|
218 |
+
{Regular} Hello, I'd like to order a sandwich please.
|
219 |
+
{Surprised} What do you mean you're out of bread?
|
220 |
+
{Sad} I really wanted a sandwich though...
|
221 |
+
{Angry} You know what, darn you and your little shop!
|
222 |
+
{Whisper} I'll just go back home and cry now.
|
223 |
+
{Shouting} Why me?!
|
224 |
+
"""
|
225 |
+
)
|
226 |
+
|
227 |
+
gr.Markdown(
|
228 |
+
"""
|
229 |
+
**Example Input 2:**
|
230 |
+
{Speaker1_Happy} Hello, I'd like to order a sandwich please.
|
231 |
+
{Speaker2_Regular} Sorry, we're out of bread.
|
232 |
+
{Speaker1_Sad} I really wanted a sandwich though...
|
233 |
+
{Speaker2_Whisper} I'll give you the last one I was hiding.
|
234 |
+
"""
|
235 |
+
)
|
236 |
+
|
237 |
+
gr.Markdown(
|
238 |
+
"Upload different audio clips for each speech type. The first speech type is mandatory. You can add additional speech types by clicking the 'Add Speech Type' button."
|
239 |
+
)
|
240 |
+
|
241 |
+
# Regular speech type (mandatory)
|
242 |
+
with gr.Row():
|
243 |
+
with gr.Column():
|
244 |
+
regular_name = gr.Textbox(value="Regular", label="Speech Type Name")
|
245 |
+
regular_insert = gr.Button("Insert", variant="secondary")
|
246 |
+
regular_audio = gr.Audio(label="Regular Reference Audio", type="filepath")
|
247 |
+
regular_ref_text = gr.Textbox(label="Reference Text (Regular)", lines=2)
|
248 |
+
|
249 |
+
# Additional speech types (up to 99 more)
|
250 |
+
max_speech_types = 100
|
251 |
+
speech_type_rows = []
|
252 |
+
speech_type_names = [regular_name]
|
253 |
+
speech_type_audios = []
|
254 |
+
speech_type_ref_texts = []
|
255 |
+
speech_type_delete_btns = []
|
256 |
+
speech_type_insert_btns = []
|
257 |
+
speech_type_insert_btns.append(regular_insert)
|
258 |
+
|
259 |
+
for i in range(max_speech_types - 1):
|
260 |
+
with gr.Row(visible=False) as row:
|
261 |
+
with gr.Column():
|
262 |
+
name_input = gr.Textbox(label="Speech Type Name")
|
263 |
+
delete_btn = gr.Button("Delete", variant="secondary")
|
264 |
+
insert_btn = gr.Button("Insert", variant="secondary")
|
265 |
+
audio_input = gr.Audio(label="Reference Audio", type="filepath")
|
266 |
+
ref_text_input = gr.Textbox(label="Reference Text", lines=2)
|
267 |
+
speech_type_rows.append(row)
|
268 |
+
speech_type_names.append(name_input)
|
269 |
+
speech_type_audios.append(audio_input)
|
270 |
+
speech_type_ref_texts.append(ref_text_input)
|
271 |
+
speech_type_delete_btns.append(delete_btn)
|
272 |
+
speech_type_insert_btns.append(insert_btn)
|
273 |
+
|
274 |
+
# Button to add speech type
|
275 |
+
add_speech_type_btn = gr.Button("Add Speech Type")
|
276 |
+
|
277 |
+
# Keep track of current number of speech types
|
278 |
+
speech_type_count = gr.State(value=0)
|
279 |
+
|
280 |
+
# Function to add a speech type
|
281 |
+
def add_speech_type_fn(speech_type_count):
|
282 |
+
if speech_type_count < max_speech_types - 1:
|
283 |
+
speech_type_count += 1
|
284 |
+
# Prepare updates for the rows
|
285 |
+
row_updates = []
|
286 |
+
for i in range(max_speech_types - 1):
|
287 |
+
if i < speech_type_count:
|
288 |
+
row_updates.append(gr.update(visible=True))
|
289 |
+
else:
|
290 |
+
row_updates.append(gr.update())
|
291 |
+
else:
|
292 |
+
# Optionally, show a warning
|
293 |
+
row_updates = [gr.update() for _ in range(max_speech_types - 1)]
|
294 |
+
return [speech_type_count] + row_updates
|
295 |
+
|
296 |
+
add_speech_type_btn.click(
|
297 |
+
add_speech_type_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows
|
298 |
+
)
|
299 |
+
|
300 |
+
# Function to delete a speech type
|
301 |
+
def make_delete_speech_type_fn(index):
|
302 |
+
def delete_speech_type_fn(speech_type_count):
|
303 |
+
# Prepare updates
|
304 |
+
row_updates = []
|
305 |
+
|
306 |
+
for i in range(max_speech_types - 1):
|
307 |
+
if i == index:
|
308 |
+
row_updates.append(gr.update(visible=False))
|
309 |
+
else:
|
310 |
+
row_updates.append(gr.update())
|
311 |
+
|
312 |
+
speech_type_count = max(0, speech_type_count - 1)
|
313 |
+
|
314 |
+
return [speech_type_count] + row_updates
|
315 |
+
|
316 |
+
return delete_speech_type_fn
|
317 |
+
|
318 |
+
# Update delete button clicks
|
319 |
+
for i, delete_btn in enumerate(speech_type_delete_btns):
|
320 |
+
delete_fn = make_delete_speech_type_fn(i)
|
321 |
+
delete_btn.click(delete_fn, inputs=speech_type_count, outputs=[speech_type_count] + speech_type_rows)
|
322 |
+
|
323 |
+
# Text input for the prompt
|
324 |
+
gen_text_input_multistyle = gr.Textbox(
|
325 |
+
label="Text to Generate",
|
326 |
+
lines=10,
|
327 |
+
placeholder="Enter the script with speaker names (or emotion types) at the start of each block, e.g.:\n\n{Regular} Hello, I'd like to order a sandwich please.\n{Surprised} What do you mean you're out of bread?\n{Sad} I really wanted a sandwich though...\n{Angry} You know what, darn you and your little shop!\n{Whisper} I'll just go back home and cry now.\n{Shouting} Why me?!",
|
328 |
+
)
|
329 |
+
|
330 |
+
def make_insert_speech_type_fn(index):
|
331 |
+
def insert_speech_type_fn(current_text, speech_type_name):
|
332 |
+
current_text = current_text or ""
|
333 |
+
speech_type_name = speech_type_name or "None"
|
334 |
+
updated_text = current_text + f"{{{speech_type_name}}} "
|
335 |
+
return gr.update(value=updated_text)
|
336 |
+
|
337 |
+
return insert_speech_type_fn
|
338 |
+
|
339 |
+
for i, insert_btn in enumerate(speech_type_insert_btns):
|
340 |
+
insert_fn = make_insert_speech_type_fn(i)
|
341 |
+
insert_btn.click(
|
342 |
+
insert_fn,
|
343 |
+
inputs=[gen_text_input_multistyle, speech_type_names[i]],
|
344 |
+
outputs=gen_text_input_multistyle,
|
345 |
+
)
|
346 |
+
|
347 |
+
# Model choice
|
348 |
+
model_choice_multistyle = gr.Radio(choices=["F5-TTS", "E2-TTS"], label="Choose TTS Model", value="F5-TTS")
|
349 |
+
|
350 |
+
with gr.Accordion("Advanced Settings", open=False):
|
351 |
+
remove_silence_multistyle = gr.Checkbox(
|
352 |
+
label="Remove Silences",
|
353 |
+
value=False,
|
354 |
+
)
|
355 |
+
|
356 |
+
# Generate button
|
357 |
+
generate_multistyle_btn = gr.Button("Generate Multi-Style Speech", variant="primary")
|
358 |
+
|
359 |
+
# Output audio
|
360 |
+
audio_output_multistyle = gr.Audio(label="Synthesized Audio")
|
361 |
+
|
362 |
+
@gpu_decorator
|
363 |
+
def generate_multistyle_speech(
|
364 |
+
regular_audio,
|
365 |
+
regular_ref_text,
|
366 |
+
gen_text,
|
367 |
+
*args,
|
368 |
+
):
|
369 |
+
num_additional_speech_types = max_speech_types - 1
|
370 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
371 |
+
speech_type_audios_list = args[num_additional_speech_types : 2 * num_additional_speech_types]
|
372 |
+
speech_type_ref_texts_list = args[2 * num_additional_speech_types : 3 * num_additional_speech_types]
|
373 |
+
model_choice = args[3 * num_additional_speech_types + 1]
|
374 |
+
remove_silence = args[3 * num_additional_speech_types + 1]
|
375 |
+
|
376 |
+
# Collect the speech types and their audios into a dict
|
377 |
+
speech_types = {"Regular": {"audio": regular_audio, "ref_text": regular_ref_text}}
|
378 |
+
|
379 |
+
for name_input, audio_input, ref_text_input in zip(
|
380 |
+
speech_type_names_list, speech_type_audios_list, speech_type_ref_texts_list
|
381 |
+
):
|
382 |
+
if name_input and audio_input:
|
383 |
+
speech_types[name_input] = {"audio": audio_input, "ref_text": ref_text_input}
|
384 |
+
|
385 |
+
# Parse the gen_text into segments
|
386 |
+
segments = parse_speechtypes_text(gen_text)
|
387 |
+
|
388 |
+
# For each segment, generate speech
|
389 |
+
generated_audio_segments = []
|
390 |
+
current_style = "Regular"
|
391 |
+
|
392 |
+
for segment in segments:
|
393 |
+
style = segment["style"]
|
394 |
+
text = segment["text"]
|
395 |
+
|
396 |
+
if style in speech_types:
|
397 |
+
current_style = style
|
398 |
+
else:
|
399 |
+
# If style not available, default to Regular
|
400 |
+
current_style = "Regular"
|
401 |
+
|
402 |
+
ref_audio = speech_types[current_style]["audio"]
|
403 |
+
ref_text = speech_types[current_style].get("ref_text", "")
|
404 |
+
|
405 |
+
# Generate speech for this segment
|
406 |
+
audio, _ = infer(
|
407 |
+
ref_audio, ref_text, text, model_choice, remove_silence, 0, show_info=print
|
408 |
+
) # show_info=print no pull to top when generating
|
409 |
+
sr, audio_data = audio
|
410 |
+
|
411 |
+
generated_audio_segments.append(audio_data)
|
412 |
+
|
413 |
+
# Concatenate all audio segments
|
414 |
+
if generated_audio_segments:
|
415 |
+
final_audio_data = np.concatenate(generated_audio_segments)
|
416 |
+
return (sr, final_audio_data)
|
417 |
+
else:
|
418 |
+
gr.Warning("No audio generated.")
|
419 |
+
return None
|
420 |
+
|
421 |
+
generate_multistyle_btn.click(
|
422 |
+
generate_multistyle_speech,
|
423 |
+
inputs=[
|
424 |
+
regular_audio,
|
425 |
+
regular_ref_text,
|
426 |
+
gen_text_input_multistyle,
|
427 |
+
]
|
428 |
+
+ speech_type_names
|
429 |
+
+ speech_type_audios
|
430 |
+
+ speech_type_ref_texts
|
431 |
+
+ [
|
432 |
+
model_choice_multistyle,
|
433 |
+
remove_silence_multistyle,
|
434 |
+
],
|
435 |
+
outputs=audio_output_multistyle,
|
436 |
+
)
|
437 |
+
|
438 |
+
# Validation function to disable Generate button if speech types are missing
|
439 |
+
def validate_speech_types(gen_text, regular_name, *args):
|
440 |
+
num_additional_speech_types = max_speech_types - 1
|
441 |
+
speech_type_names_list = args[:num_additional_speech_types]
|
442 |
+
|
443 |
+
# Collect the speech types names
|
444 |
+
speech_types_available = set()
|
445 |
+
if regular_name:
|
446 |
+
speech_types_available.add(regular_name)
|
447 |
+
for name_input in speech_type_names_list:
|
448 |
+
if name_input:
|
449 |
+
speech_types_available.add(name_input)
|
450 |
+
|
451 |
+
# Parse the gen_text to get the speech types used
|
452 |
+
segments = parse_speechtypes_text(gen_text)
|
453 |
+
speech_types_in_text = set(segment["style"] for segment in segments)
|
454 |
+
|
455 |
+
# Check if all speech types in text are available
|
456 |
+
missing_speech_types = speech_types_in_text - speech_types_available
|
457 |
+
|
458 |
+
if missing_speech_types:
|
459 |
+
# Disable the generate button
|
460 |
+
return gr.update(interactive=False)
|
461 |
+
else:
|
462 |
+
# Enable the generate button
|
463 |
+
return gr.update(interactive=True)
|
464 |
+
|
465 |
+
gen_text_input_multistyle.change(
|
466 |
+
validate_speech_types,
|
467 |
+
inputs=[gen_text_input_multistyle, regular_name] + speech_type_names,
|
468 |
+
outputs=generate_multistyle_btn,
|
469 |
+
)
|
470 |
+
|
471 |
+
|
472 |
+
with gr.Blocks() as app_chat:
|
473 |
+
gr.Markdown(
|
474 |
+
"""
|
475 |
+
# Voice Chat
|
476 |
+
Have a conversation with an AI using your reference voice!
|
477 |
+
1. Upload a reference audio clip and optionally its transcript.
|
478 |
+
2. Load the chat model.
|
479 |
+
3. Record your message through your microphone.
|
480 |
+
4. The AI will respond using the reference voice.
|
481 |
+
"""
|
482 |
+
)
|
483 |
+
|
484 |
+
if not USING_SPACES:
|
485 |
+
load_chat_model_btn = gr.Button("Load Chat Model", variant="primary")
|
486 |
+
|
487 |
+
chat_interface_container = gr.Column(visible=False)
|
488 |
+
|
489 |
+
@gpu_decorator
|
490 |
+
def load_chat_model():
|
491 |
+
global chat_model_state, chat_tokenizer_state
|
492 |
+
if chat_model_state is None:
|
493 |
+
show_info = gr.Info
|
494 |
+
show_info("Loading chat model...")
|
495 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
496 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(
|
497 |
+
model_name, torch_dtype="auto", device_map="auto"
|
498 |
+
)
|
499 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
500 |
+
show_info("Chat model loaded.")
|
501 |
+
|
502 |
+
return gr.update(visible=False), gr.update(visible=True)
|
503 |
+
|
504 |
+
load_chat_model_btn.click(load_chat_model, outputs=[load_chat_model_btn, chat_interface_container])
|
505 |
+
|
506 |
+
else:
|
507 |
+
chat_interface_container = gr.Column()
|
508 |
+
|
509 |
+
if chat_model_state is None:
|
510 |
+
model_name = "Qwen/Qwen2.5-3B-Instruct"
|
511 |
+
chat_model_state = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
512 |
+
chat_tokenizer_state = AutoTokenizer.from_pretrained(model_name)
|
513 |
+
|
514 |
+
with chat_interface_container:
|
515 |
+
with gr.Row():
|
516 |
+
with gr.Column():
|
517 |
+
ref_audio_chat = gr.Audio(label="Reference Audio", type="filepath")
|
518 |
+
with gr.Column():
|
519 |
+
with gr.Accordion("Advanced Settings", open=False):
|
520 |
+
model_choice_chat = gr.Radio(
|
521 |
+
choices=["F5-TTS", "E2-TTS"],
|
522 |
+
label="TTS Model",
|
523 |
+
value="F5-TTS",
|
524 |
+
)
|
525 |
+
remove_silence_chat = gr.Checkbox(
|
526 |
+
label="Remove Silences",
|
527 |
+
value=True,
|
528 |
+
)
|
529 |
+
ref_text_chat = gr.Textbox(
|
530 |
+
label="Reference Text",
|
531 |
+
info="Optional: Leave blank to auto-transcribe",
|
532 |
+
lines=2,
|
533 |
+
)
|
534 |
+
system_prompt_chat = gr.Textbox(
|
535 |
+
label="System Prompt",
|
536 |
+
value="You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
537 |
+
lines=2,
|
538 |
+
)
|
539 |
+
|
540 |
+
chatbot_interface = gr.Chatbot(label="Conversation")
|
541 |
+
|
542 |
+
with gr.Row():
|
543 |
+
with gr.Column():
|
544 |
+
audio_input_chat = gr.Microphone(
|
545 |
+
label="Speak your message",
|
546 |
+
type="filepath",
|
547 |
+
)
|
548 |
+
audio_output_chat = gr.Audio(autoplay=True)
|
549 |
+
with gr.Column():
|
550 |
+
text_input_chat = gr.Textbox(
|
551 |
+
label="Type your message",
|
552 |
+
lines=1,
|
553 |
+
)
|
554 |
+
send_btn_chat = gr.Button("Send")
|
555 |
+
clear_btn_chat = gr.Button("Clear Conversation")
|
556 |
+
|
557 |
+
conversation_state = gr.State(
|
558 |
+
value=[
|
559 |
+
{
|
560 |
+
"role": "system",
|
561 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
562 |
+
}
|
563 |
+
]
|
564 |
+
)
|
565 |
+
|
566 |
+
# Modify process_audio_input to use model and tokenizer from state
|
567 |
+
@gpu_decorator
|
568 |
+
def process_audio_input(audio_path, text, history, conv_state):
|
569 |
+
"""Handle audio or text input from user"""
|
570 |
+
|
571 |
+
if not audio_path and not text.strip():
|
572 |
+
return history, conv_state, ""
|
573 |
+
|
574 |
+
if audio_path:
|
575 |
+
text = preprocess_ref_audio_text(audio_path, text)[1]
|
576 |
+
|
577 |
+
if not text.strip():
|
578 |
+
return history, conv_state, ""
|
579 |
+
|
580 |
+
conv_state.append({"role": "user", "content": text})
|
581 |
+
history.append((text, None))
|
582 |
+
|
583 |
+
response = generate_response(conv_state, chat_model_state, chat_tokenizer_state)
|
584 |
+
|
585 |
+
conv_state.append({"role": "assistant", "content": response})
|
586 |
+
history[-1] = (text, response)
|
587 |
+
|
588 |
+
return history, conv_state, ""
|
589 |
+
|
590 |
+
@gpu_decorator
|
591 |
+
def generate_audio_response(history, ref_audio, ref_text, model, remove_silence):
|
592 |
+
"""Generate TTS audio for AI response"""
|
593 |
+
if not history or not ref_audio:
|
594 |
+
return None
|
595 |
+
|
596 |
+
last_user_message, last_ai_response = history[-1]
|
597 |
+
if not last_ai_response:
|
598 |
+
return None
|
599 |
+
|
600 |
+
audio_result, _ = infer(
|
601 |
+
ref_audio,
|
602 |
+
ref_text,
|
603 |
+
last_ai_response,
|
604 |
+
model,
|
605 |
+
remove_silence,
|
606 |
+
cross_fade_duration=0.15,
|
607 |
+
speed=1.0,
|
608 |
+
show_info=print, # show_info=print no pull to top when generating
|
609 |
+
)
|
610 |
+
return audio_result
|
611 |
+
|
612 |
+
def clear_conversation():
|
613 |
+
"""Reset the conversation"""
|
614 |
+
return [], [
|
615 |
+
{
|
616 |
+
"role": "system",
|
617 |
+
"content": "You are not an AI assistant, you are whoever the user says you are. You must stay in character. Keep your responses concise since they will be spoken out loud.",
|
618 |
+
}
|
619 |
+
]
|
620 |
+
|
621 |
+
def update_system_prompt(new_prompt):
|
622 |
+
"""Update the system prompt and reset the conversation"""
|
623 |
+
new_conv_state = [{"role": "system", "content": new_prompt}]
|
624 |
+
return [], new_conv_state
|
625 |
+
|
626 |
+
# Handle audio input
|
627 |
+
audio_input_chat.stop_recording(
|
628 |
+
process_audio_input,
|
629 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
630 |
+
outputs=[chatbot_interface, conversation_state],
|
631 |
+
).then(
|
632 |
+
generate_audio_response,
|
633 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
634 |
+
outputs=[audio_output_chat],
|
635 |
+
).then(
|
636 |
+
lambda: None,
|
637 |
+
None,
|
638 |
+
audio_input_chat,
|
639 |
+
)
|
640 |
+
|
641 |
+
# Handle text input
|
642 |
+
text_input_chat.submit(
|
643 |
+
process_audio_input,
|
644 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
645 |
+
outputs=[chatbot_interface, conversation_state],
|
646 |
+
).then(
|
647 |
+
generate_audio_response,
|
648 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
649 |
+
outputs=[audio_output_chat],
|
650 |
+
).then(
|
651 |
+
lambda: None,
|
652 |
+
None,
|
653 |
+
text_input_chat,
|
654 |
+
)
|
655 |
+
|
656 |
+
# Handle send button
|
657 |
+
send_btn_chat.click(
|
658 |
+
process_audio_input,
|
659 |
+
inputs=[audio_input_chat, text_input_chat, chatbot_interface, conversation_state],
|
660 |
+
outputs=[chatbot_interface, conversation_state],
|
661 |
+
).then(
|
662 |
+
generate_audio_response,
|
663 |
+
inputs=[chatbot_interface, ref_audio_chat, ref_text_chat, model_choice_chat, remove_silence_chat],
|
664 |
+
outputs=[audio_output_chat],
|
665 |
+
).then(
|
666 |
+
lambda: None,
|
667 |
+
None,
|
668 |
+
text_input_chat,
|
669 |
+
)
|
670 |
+
|
671 |
+
# Handle clear button
|
672 |
+
clear_btn_chat.click(
|
673 |
+
clear_conversation,
|
674 |
+
outputs=[chatbot_interface, conversation_state],
|
675 |
+
)
|
676 |
+
|
677 |
+
# Handle system prompt change and reset conversation
|
678 |
+
system_prompt_chat.change(
|
679 |
+
update_system_prompt,
|
680 |
+
inputs=system_prompt_chat,
|
681 |
+
outputs=[chatbot_interface, conversation_state],
|
682 |
+
)
|
683 |
+
|
684 |
+
|
685 |
+
with gr.Blocks() as app:
|
686 |
+
gr.Markdown(
|
687 |
+
"""
|
688 |
+
# E2/F5 TTS
|
689 |
+
|
690 |
+
This is a local web UI for F5 TTS with advanced batch processing support. This app supports the following TTS models:
|
691 |
+
|
692 |
+
* [F5-TTS](https://arxiv.org/abs/2410.06885) (A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)
|
693 |
+
* [E2 TTS](https://arxiv.org/abs/2406.18009) (Embarrassingly Easy Fully Non-Autoregressive Zero-Shot TTS)
|
694 |
+
|
695 |
+
The checkpoints support English and Chinese.
|
696 |
+
|
697 |
+
If you're having issues, try converting your reference audio to WAV or MP3, clipping it to 15s, and shortening your prompt.
|
698 |
+
|
699 |
+
**NOTE: Reference text will be automatically transcribed with Whisper if not provided. For best results, keep your reference clips short (<15s). Ensure the audio is fully uploaded before generating.**
|
700 |
+
"""
|
701 |
+
)
|
702 |
+
gr.TabbedInterface(
|
703 |
+
[app_tts, app_multistyle, app_chat, app_credits],
|
704 |
+
["TTS", "Multi-Speech", "Voice-Chat", "Credits"],
|
705 |
+
)
|
706 |
+
|
707 |
+
|
708 |
+
@click.command()
|
709 |
+
@click.option("--port", "-p", default=None, type=int, help="Port to run the app on")
|
710 |
+
@click.option("--host", "-H", default=None, help="Host to run the app on")
|
711 |
+
@click.option(
|
712 |
+
"--share",
|
713 |
+
"-s",
|
714 |
+
default=False,
|
715 |
+
is_flag=True,
|
716 |
+
help="Share the app via Gradio share link",
|
717 |
+
)
|
718 |
+
@click.option("--api", "-a", default=True, is_flag=True, help="Allow API access")
|
719 |
+
def main(port, host, share, api):
|
720 |
+
global app
|
721 |
+
print("Starting app...")
|
722 |
+
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api)
|
723 |
+
|
724 |
+
|
725 |
+
if __name__ == "__main__":
|
726 |
+
if not USING_SPACES:
|
727 |
+
main()
|
728 |
+
else:
|
729 |
+
app.queue().launch()
|
src/f5_tts/infer/speech_edit.py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchaudio
|
6 |
+
from vocos import Vocos
|
7 |
+
|
8 |
+
from f5_tts.model import CFM, UNetT, DiT
|
9 |
+
from f5_tts.model.utils import (
|
10 |
+
get_tokenizer,
|
11 |
+
convert_char_to_pinyin,
|
12 |
+
)
|
13 |
+
from f5_tts.infer.utils_infer import (
|
14 |
+
load_checkpoint,
|
15 |
+
save_spectrogram,
|
16 |
+
)
|
17 |
+
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
19 |
+
|
20 |
+
|
21 |
+
# --------------------- Dataset Settings -------------------- #
|
22 |
+
|
23 |
+
target_sample_rate = 24000
|
24 |
+
n_mel_channels = 100
|
25 |
+
hop_length = 256
|
26 |
+
target_rms = 0.1
|
27 |
+
|
28 |
+
tokenizer = "pinyin"
|
29 |
+
dataset_name = "Emilia_ZH_EN"
|
30 |
+
|
31 |
+
|
32 |
+
# ---------------------- infer setting ---------------------- #
|
33 |
+
|
34 |
+
seed = None # int | None
|
35 |
+
|
36 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
37 |
+
ckpt_step = 1200000
|
38 |
+
|
39 |
+
nfe_step = 32 # 16, 32
|
40 |
+
cfg_strength = 2.0
|
41 |
+
ode_method = "euler" # euler | midpoint
|
42 |
+
sway_sampling_coef = -1.0
|
43 |
+
speed = 1.0
|
44 |
+
|
45 |
+
if exp_name == "F5TTS_Base":
|
46 |
+
model_cls = DiT
|
47 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
48 |
+
|
49 |
+
elif exp_name == "E2TTS_Base":
|
50 |
+
model_cls = UNetT
|
51 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
52 |
+
|
53 |
+
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
54 |
+
output_dir = "tests"
|
55 |
+
|
56 |
+
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
57 |
+
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
58 |
+
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
59 |
+
# ctc-forced-aligner --audio_path "src/f5_tts/infer/examples/basic/basic_ref_en.wav" --text_path "tests/test_edit.txt" --language "zho" --romanize --split_size "char"
|
60 |
+
# [result will be saved at same path of audio file]
|
61 |
+
# [--language "zho" for Chinese, "eng" for English]
|
62 |
+
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
63 |
+
|
64 |
+
audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav"
|
65 |
+
origin_text = "Some call me nature, others call me mother nature."
|
66 |
+
target_text = "Some call me optimist, others call me realist."
|
67 |
+
parts_to_edit = [
|
68 |
+
[1.42, 2.44],
|
69 |
+
[4.04, 4.9],
|
70 |
+
] # stard_ends of "nature" & "mother nature", in seconds
|
71 |
+
fix_duration = [
|
72 |
+
1.2,
|
73 |
+
1,
|
74 |
+
] # fix duration for "optimist" & "realist", in seconds
|
75 |
+
|
76 |
+
# audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_zh.wav"
|
77 |
+
# origin_text = "对,这就是我,万人敬仰的太乙真人。"
|
78 |
+
# target_text = "对,那就是你,万人敬仰的太白金星。"
|
79 |
+
# parts_to_edit = [[0.84, 1.4], [1.92, 2.4], [4.26, 6.26], ]
|
80 |
+
# fix_duration = None # use origin text duration
|
81 |
+
|
82 |
+
|
83 |
+
# -------------------------------------------------#
|
84 |
+
|
85 |
+
use_ema = True
|
86 |
+
|
87 |
+
if not os.path.exists(output_dir):
|
88 |
+
os.makedirs(output_dir)
|
89 |
+
|
90 |
+
# Vocoder model
|
91 |
+
local = False
|
92 |
+
if local:
|
93 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
94 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
95 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", weights_only=True, map_location=device)
|
96 |
+
vocos.load_state_dict(state_dict)
|
97 |
+
|
98 |
+
vocos.eval()
|
99 |
+
else:
|
100 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
101 |
+
|
102 |
+
# Tokenizer
|
103 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
104 |
+
|
105 |
+
# Model
|
106 |
+
model = CFM(
|
107 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
108 |
+
mel_spec_kwargs=dict(
|
109 |
+
target_sample_rate=target_sample_rate,
|
110 |
+
n_mel_channels=n_mel_channels,
|
111 |
+
hop_length=hop_length,
|
112 |
+
),
|
113 |
+
odeint_kwargs=dict(
|
114 |
+
method=ode_method,
|
115 |
+
),
|
116 |
+
vocab_char_map=vocab_char_map,
|
117 |
+
).to(device)
|
118 |
+
|
119 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
|
120 |
+
|
121 |
+
# Audio
|
122 |
+
audio, sr = torchaudio.load(audio_to_edit)
|
123 |
+
if audio.shape[0] > 1:
|
124 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
125 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
126 |
+
if rms < target_rms:
|
127 |
+
audio = audio * target_rms / rms
|
128 |
+
if sr != target_sample_rate:
|
129 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
130 |
+
audio = resampler(audio)
|
131 |
+
offset = 0
|
132 |
+
audio_ = torch.zeros(1, 0)
|
133 |
+
edit_mask = torch.zeros(1, 0, dtype=torch.bool)
|
134 |
+
for part in parts_to_edit:
|
135 |
+
start, end = part
|
136 |
+
part_dur = end - start if fix_duration is None else fix_duration.pop(0)
|
137 |
+
part_dur = part_dur * target_sample_rate
|
138 |
+
start = start * target_sample_rate
|
139 |
+
audio_ = torch.cat((audio_, audio[:, round(offset) : round(start)], torch.zeros(1, round(part_dur))), dim=-1)
|
140 |
+
edit_mask = torch.cat(
|
141 |
+
(
|
142 |
+
edit_mask,
|
143 |
+
torch.ones(1, round((start - offset) / hop_length), dtype=torch.bool),
|
144 |
+
torch.zeros(1, round(part_dur / hop_length), dtype=torch.bool),
|
145 |
+
),
|
146 |
+
dim=-1,
|
147 |
+
)
|
148 |
+
offset = end * target_sample_rate
|
149 |
+
# audio = torch.cat((audio_, audio[:, round(offset):]), dim = -1)
|
150 |
+
edit_mask = F.pad(edit_mask, (0, audio.shape[-1] // hop_length - edit_mask.shape[-1] + 1), value=True)
|
151 |
+
audio = audio.to(device)
|
152 |
+
edit_mask = edit_mask.to(device)
|
153 |
+
|
154 |
+
# Text
|
155 |
+
text_list = [target_text]
|
156 |
+
if tokenizer == "pinyin":
|
157 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
158 |
+
else:
|
159 |
+
final_text_list = [text_list]
|
160 |
+
print(f"text : {text_list}")
|
161 |
+
print(f"pinyin: {final_text_list}")
|
162 |
+
|
163 |
+
# Duration
|
164 |
+
ref_audio_len = 0
|
165 |
+
duration = audio.shape[-1] // hop_length
|
166 |
+
|
167 |
+
# Inference
|
168 |
+
with torch.inference_mode():
|
169 |
+
generated, trajectory = model.sample(
|
170 |
+
cond=audio,
|
171 |
+
text=final_text_list,
|
172 |
+
duration=duration,
|
173 |
+
steps=nfe_step,
|
174 |
+
cfg_strength=cfg_strength,
|
175 |
+
sway_sampling_coef=sway_sampling_coef,
|
176 |
+
seed=seed,
|
177 |
+
edit_mask=edit_mask,
|
178 |
+
)
|
179 |
+
print(f"Generated mel: {generated.shape}")
|
180 |
+
|
181 |
+
# Final result
|
182 |
+
generated = generated.to(torch.float32)
|
183 |
+
generated = generated[:, ref_audio_len:, :]
|
184 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
185 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
186 |
+
if rms < target_rms:
|
187 |
+
generated_wave = generated_wave * rms / target_rms
|
188 |
+
|
189 |
+
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/speech_edit_out.png")
|
190 |
+
torchaudio.save(f"{output_dir}/speech_edit_out.wav", generated_wave, target_sample_rate)
|
191 |
+
print(f"Generated wav: {generated_wave.shape}")
|
src/f5_tts/infer/utils_infer.py
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# A unified script for inference process
|
2 |
+
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
+
|
4 |
+
import hashlib
|
5 |
+
import re
|
6 |
+
import tempfile
|
7 |
+
from importlib.resources import files
|
8 |
+
|
9 |
+
import matplotlib
|
10 |
+
|
11 |
+
matplotlib.use("Agg")
|
12 |
+
|
13 |
+
import matplotlib.pylab as plt
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torchaudio
|
17 |
+
import tqdm
|
18 |
+
from pydub import AudioSegment, silence
|
19 |
+
from transformers import pipeline
|
20 |
+
from vocos import Vocos
|
21 |
+
|
22 |
+
from f5_tts.model import CFM
|
23 |
+
from f5_tts.model.utils import (
|
24 |
+
get_tokenizer,
|
25 |
+
convert_char_to_pinyin,
|
26 |
+
)
|
27 |
+
|
28 |
+
_ref_audio_cache = {}
|
29 |
+
|
30 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
31 |
+
|
32 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
33 |
+
|
34 |
+
|
35 |
+
# -----------------------------------------
|
36 |
+
|
37 |
+
target_sample_rate = 24000
|
38 |
+
n_mel_channels = 100
|
39 |
+
hop_length = 256
|
40 |
+
target_rms = 0.1
|
41 |
+
cross_fade_duration = 0.15
|
42 |
+
ode_method = "euler"
|
43 |
+
nfe_step = 32 # 16, 32
|
44 |
+
cfg_strength = 2.0
|
45 |
+
sway_sampling_coef = -1.0
|
46 |
+
speed = 1.0
|
47 |
+
fix_duration = None
|
48 |
+
|
49 |
+
# -----------------------------------------
|
50 |
+
|
51 |
+
|
52 |
+
# chunk text into smaller pieces
|
53 |
+
|
54 |
+
|
55 |
+
def chunk_text(text, max_chars=135):
|
56 |
+
"""
|
57 |
+
Splits the input text into chunks, each with a maximum number of characters.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
text (str): The text to be split.
|
61 |
+
max_chars (int): The maximum number of characters per chunk.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
List[str]: A list of text chunks.
|
65 |
+
"""
|
66 |
+
chunks = []
|
67 |
+
current_chunk = ""
|
68 |
+
# Split the text into sentences based on punctuation followed by whitespace
|
69 |
+
sentences = re.split(r"(?<=[;:,.!?])\s+|(?<=[;:,。!?])", text)
|
70 |
+
|
71 |
+
for sentence in sentences:
|
72 |
+
if len(current_chunk.encode("utf-8")) + len(sentence.encode("utf-8")) <= max_chars:
|
73 |
+
current_chunk += sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
|
74 |
+
else:
|
75 |
+
if current_chunk:
|
76 |
+
chunks.append(current_chunk.strip())
|
77 |
+
current_chunk = sentence + " " if sentence and len(sentence[-1].encode("utf-8")) == 1 else sentence
|
78 |
+
|
79 |
+
if current_chunk:
|
80 |
+
chunks.append(current_chunk.strip())
|
81 |
+
|
82 |
+
return chunks
|
83 |
+
|
84 |
+
|
85 |
+
# load vocoder
|
86 |
+
def load_vocoder(is_local=False, local_path="", device=device):
|
87 |
+
if is_local:
|
88 |
+
print(f"Load vocos from local path {local_path}")
|
89 |
+
vocos = Vocos.from_hparams(f"{local_path}/config.yaml")
|
90 |
+
state_dict = torch.load(f"{local_path}/pytorch_model.bin", map_location=device)
|
91 |
+
vocos.load_state_dict(state_dict)
|
92 |
+
vocos.eval()
|
93 |
+
else:
|
94 |
+
print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
95 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
96 |
+
return vocos
|
97 |
+
|
98 |
+
|
99 |
+
# load asr pipeline
|
100 |
+
|
101 |
+
asr_pipe = None
|
102 |
+
|
103 |
+
|
104 |
+
def initialize_asr_pipeline(device=device):
|
105 |
+
global asr_pipe
|
106 |
+
asr_pipe = pipeline(
|
107 |
+
"automatic-speech-recognition",
|
108 |
+
model="openai/whisper-large-v3-turbo",
|
109 |
+
torch_dtype=torch.float16,
|
110 |
+
device=device,
|
111 |
+
)
|
112 |
+
|
113 |
+
|
114 |
+
# load model checkpoint for inference
|
115 |
+
|
116 |
+
|
117 |
+
def load_checkpoint(model, ckpt_path, device, use_ema=True):
|
118 |
+
if device == "cuda":
|
119 |
+
model = model.half()
|
120 |
+
|
121 |
+
ckpt_type = ckpt_path.split(".")[-1]
|
122 |
+
if ckpt_type == "safetensors":
|
123 |
+
from safetensors.torch import load_file
|
124 |
+
|
125 |
+
checkpoint = load_file(ckpt_path)
|
126 |
+
else:
|
127 |
+
checkpoint = torch.load(ckpt_path, weights_only=True)
|
128 |
+
|
129 |
+
if use_ema:
|
130 |
+
if ckpt_type == "safetensors":
|
131 |
+
checkpoint = {"ema_model_state_dict": checkpoint}
|
132 |
+
checkpoint["model_state_dict"] = {
|
133 |
+
k.replace("ema_model.", ""): v
|
134 |
+
for k, v in checkpoint["ema_model_state_dict"].items()
|
135 |
+
if k not in ["initted", "step"]
|
136 |
+
}
|
137 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
138 |
+
else:
|
139 |
+
if ckpt_type == "safetensors":
|
140 |
+
checkpoint = {"model_state_dict": checkpoint}
|
141 |
+
model.load_state_dict(checkpoint["model_state_dict"])
|
142 |
+
|
143 |
+
return model.to(device)
|
144 |
+
|
145 |
+
|
146 |
+
# load model for inference
|
147 |
+
|
148 |
+
|
149 |
+
def load_model(model_cls, model_cfg, ckpt_path, vocab_file="", ode_method=ode_method, use_ema=True, device=device):
|
150 |
+
if vocab_file == "":
|
151 |
+
vocab_file = str(files("f5_tts").joinpath("infer/examples/vocab.txt"))
|
152 |
+
tokenizer = "custom"
|
153 |
+
|
154 |
+
print("\nvocab : ", vocab_file)
|
155 |
+
print("tokenizer : ", tokenizer)
|
156 |
+
print("model : ", ckpt_path, "\n")
|
157 |
+
|
158 |
+
vocab_char_map, vocab_size = get_tokenizer(vocab_file, tokenizer)
|
159 |
+
model = CFM(
|
160 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
161 |
+
mel_spec_kwargs=dict(
|
162 |
+
target_sample_rate=target_sample_rate,
|
163 |
+
n_mel_channels=n_mel_channels,
|
164 |
+
hop_length=hop_length,
|
165 |
+
),
|
166 |
+
odeint_kwargs=dict(
|
167 |
+
method=ode_method,
|
168 |
+
),
|
169 |
+
vocab_char_map=vocab_char_map,
|
170 |
+
).to(device)
|
171 |
+
|
172 |
+
model = load_checkpoint(model, ckpt_path, device, use_ema=use_ema)
|
173 |
+
|
174 |
+
return model
|
175 |
+
|
176 |
+
|
177 |
+
# preprocess reference audio and text
|
178 |
+
|
179 |
+
|
180 |
+
def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_info=print, device=device):
|
181 |
+
show_info("Converting audio...")
|
182 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
183 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
184 |
+
|
185 |
+
if clip_short:
|
186 |
+
# 1. try to find long silence for clipping
|
187 |
+
non_silent_segs = silence.split_on_silence(
|
188 |
+
aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=1000
|
189 |
+
)
|
190 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
191 |
+
for non_silent_seg in non_silent_segs:
|
192 |
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
193 |
+
show_info("Audio is over 15s, clipping short. (1)")
|
194 |
+
break
|
195 |
+
non_silent_wave += non_silent_seg
|
196 |
+
|
197 |
+
# 2. try to find short silence for clipping if 1. failed
|
198 |
+
if len(non_silent_wave) > 15000:
|
199 |
+
non_silent_segs = silence.split_on_silence(
|
200 |
+
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000
|
201 |
+
)
|
202 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
203 |
+
for non_silent_seg in non_silent_segs:
|
204 |
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
205 |
+
show_info("Audio is over 15s, clipping short. (2)")
|
206 |
+
break
|
207 |
+
non_silent_wave += non_silent_seg
|
208 |
+
|
209 |
+
aseg = non_silent_wave
|
210 |
+
|
211 |
+
# 3. if no proper silence found for clipping
|
212 |
+
if len(aseg) > 15000:
|
213 |
+
aseg = aseg[:15000]
|
214 |
+
show_info("Audio is over 15s, clipping short. (3)")
|
215 |
+
|
216 |
+
aseg.export(f.name, format="wav")
|
217 |
+
ref_audio = f.name
|
218 |
+
|
219 |
+
# Compute a hash of the reference audio file
|
220 |
+
with open(ref_audio, "rb") as audio_file:
|
221 |
+
audio_data = audio_file.read()
|
222 |
+
audio_hash = hashlib.md5(audio_data).hexdigest()
|
223 |
+
|
224 |
+
global _ref_audio_cache
|
225 |
+
if audio_hash in _ref_audio_cache:
|
226 |
+
# Use cached reference text
|
227 |
+
show_info("Using cached reference text...")
|
228 |
+
ref_text = _ref_audio_cache[audio_hash]
|
229 |
+
else:
|
230 |
+
if not ref_text.strip():
|
231 |
+
global asr_pipe
|
232 |
+
if asr_pipe is None:
|
233 |
+
initialize_asr_pipeline(device=device)
|
234 |
+
show_info("No reference text provided, transcribing reference audio...")
|
235 |
+
ref_text = asr_pipe(
|
236 |
+
ref_audio,
|
237 |
+
chunk_length_s=30,
|
238 |
+
batch_size=128,
|
239 |
+
generate_kwargs={"task": "transcribe"},
|
240 |
+
return_timestamps=False,
|
241 |
+
)["text"].strip()
|
242 |
+
show_info("Finished transcription")
|
243 |
+
else:
|
244 |
+
show_info("Using custom reference text...")
|
245 |
+
# Cache the transcribed text
|
246 |
+
_ref_audio_cache[audio_hash] = ref_text
|
247 |
+
|
248 |
+
# Ensure ref_text ends with a proper sentence-ending punctuation
|
249 |
+
if not ref_text.endswith(". ") and not ref_text.endswith("。"):
|
250 |
+
if ref_text.endswith("."):
|
251 |
+
ref_text += " "
|
252 |
+
else:
|
253 |
+
ref_text += ". "
|
254 |
+
|
255 |
+
return ref_audio, ref_text
|
256 |
+
|
257 |
+
|
258 |
+
# infer process: chunk text -> infer batches [i.e. infer_batch_process()]
|
259 |
+
|
260 |
+
|
261 |
+
def infer_process(
|
262 |
+
ref_audio,
|
263 |
+
ref_text,
|
264 |
+
gen_text,
|
265 |
+
model_obj,
|
266 |
+
show_info=print,
|
267 |
+
progress=tqdm,
|
268 |
+
target_rms=target_rms,
|
269 |
+
cross_fade_duration=cross_fade_duration,
|
270 |
+
nfe_step=nfe_step,
|
271 |
+
cfg_strength=cfg_strength,
|
272 |
+
sway_sampling_coef=sway_sampling_coef,
|
273 |
+
speed=speed,
|
274 |
+
fix_duration=fix_duration,
|
275 |
+
device=device,
|
276 |
+
):
|
277 |
+
# Split the input text into batches
|
278 |
+
audio, sr = torchaudio.load(ref_audio)
|
279 |
+
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
|
280 |
+
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
281 |
+
for i, gen_text in enumerate(gen_text_batches):
|
282 |
+
print(f"gen_text {i}", gen_text)
|
283 |
+
|
284 |
+
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
|
285 |
+
return infer_batch_process(
|
286 |
+
(audio, sr),
|
287 |
+
ref_text,
|
288 |
+
gen_text_batches,
|
289 |
+
model_obj,
|
290 |
+
progress=progress,
|
291 |
+
target_rms=target_rms,
|
292 |
+
cross_fade_duration=cross_fade_duration,
|
293 |
+
nfe_step=nfe_step,
|
294 |
+
cfg_strength=cfg_strength,
|
295 |
+
sway_sampling_coef=sway_sampling_coef,
|
296 |
+
speed=speed,
|
297 |
+
fix_duration=fix_duration,
|
298 |
+
device=device,
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
# infer batches
|
303 |
+
|
304 |
+
|
305 |
+
def infer_batch_process(
|
306 |
+
ref_audio,
|
307 |
+
ref_text,
|
308 |
+
gen_text_batches,
|
309 |
+
model_obj,
|
310 |
+
progress=tqdm,
|
311 |
+
target_rms=0.1,
|
312 |
+
cross_fade_duration=0.15,
|
313 |
+
nfe_step=32,
|
314 |
+
cfg_strength=2.0,
|
315 |
+
sway_sampling_coef=-1,
|
316 |
+
speed=1,
|
317 |
+
fix_duration=None,
|
318 |
+
device=None,
|
319 |
+
):
|
320 |
+
audio, sr = ref_audio
|
321 |
+
if audio.shape[0] > 1:
|
322 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
323 |
+
|
324 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
325 |
+
if rms < target_rms:
|
326 |
+
audio = audio * target_rms / rms
|
327 |
+
if sr != target_sample_rate:
|
328 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
329 |
+
audio = resampler(audio)
|
330 |
+
audio = audio.to(device)
|
331 |
+
|
332 |
+
generated_waves = []
|
333 |
+
spectrograms = []
|
334 |
+
|
335 |
+
if len(ref_text[-1].encode("utf-8")) == 1:
|
336 |
+
ref_text = ref_text + " "
|
337 |
+
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
|
338 |
+
# Prepare the text
|
339 |
+
text_list = [ref_text + gen_text]
|
340 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
341 |
+
|
342 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
343 |
+
if fix_duration is not None:
|
344 |
+
duration = int(fix_duration * target_sample_rate / hop_length)
|
345 |
+
else:
|
346 |
+
# Calculate duration
|
347 |
+
ref_text_len = len(ref_text.encode("utf-8"))
|
348 |
+
gen_text_len = len(gen_text.encode("utf-8"))
|
349 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
350 |
+
|
351 |
+
# inference
|
352 |
+
with torch.inference_mode():
|
353 |
+
generated, _ = model_obj.sample(
|
354 |
+
cond=audio,
|
355 |
+
text=final_text_list,
|
356 |
+
duration=duration,
|
357 |
+
steps=nfe_step,
|
358 |
+
cfg_strength=cfg_strength,
|
359 |
+
sway_sampling_coef=sway_sampling_coef,
|
360 |
+
)
|
361 |
+
|
362 |
+
generated = generated.to(torch.float32)
|
363 |
+
generated = generated[:, ref_audio_len:, :]
|
364 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
365 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
366 |
+
if rms < target_rms:
|
367 |
+
generated_wave = generated_wave * rms / target_rms
|
368 |
+
|
369 |
+
# wav -> numpy
|
370 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
371 |
+
|
372 |
+
generated_waves.append(generated_wave)
|
373 |
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
374 |
+
|
375 |
+
# Combine all generated waves with cross-fading
|
376 |
+
if cross_fade_duration <= 0:
|
377 |
+
# Simply concatenate
|
378 |
+
final_wave = np.concatenate(generated_waves)
|
379 |
+
else:
|
380 |
+
final_wave = generated_waves[0]
|
381 |
+
for i in range(1, len(generated_waves)):
|
382 |
+
prev_wave = final_wave
|
383 |
+
next_wave = generated_waves[i]
|
384 |
+
|
385 |
+
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
|
386 |
+
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
|
387 |
+
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
|
388 |
+
|
389 |
+
if cross_fade_samples <= 0:
|
390 |
+
# No overlap possible, concatenate
|
391 |
+
final_wave = np.concatenate([prev_wave, next_wave])
|
392 |
+
continue
|
393 |
+
|
394 |
+
# Overlapping parts
|
395 |
+
prev_overlap = prev_wave[-cross_fade_samples:]
|
396 |
+
next_overlap = next_wave[:cross_fade_samples]
|
397 |
+
|
398 |
+
# Fade out and fade in
|
399 |
+
fade_out = np.linspace(1, 0, cross_fade_samples)
|
400 |
+
fade_in = np.linspace(0, 1, cross_fade_samples)
|
401 |
+
|
402 |
+
# Cross-faded overlap
|
403 |
+
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
404 |
+
|
405 |
+
# Combine
|
406 |
+
new_wave = np.concatenate(
|
407 |
+
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
|
408 |
+
)
|
409 |
+
|
410 |
+
final_wave = new_wave
|
411 |
+
|
412 |
+
# Create a combined spectrogram
|
413 |
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
414 |
+
|
415 |
+
return final_wave, target_sample_rate, combined_spectrogram
|
416 |
+
|
417 |
+
|
418 |
+
# remove silence from generated wav
|
419 |
+
|
420 |
+
|
421 |
+
def remove_silence_for_generated_wav(filename):
|
422 |
+
aseg = AudioSegment.from_file(filename)
|
423 |
+
non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
|
424 |
+
non_silent_wave = AudioSegment.silent(duration=0)
|
425 |
+
for non_silent_seg in non_silent_segs:
|
426 |
+
non_silent_wave += non_silent_seg
|
427 |
+
aseg = non_silent_wave
|
428 |
+
aseg.export(filename, format="wav")
|
429 |
+
|
430 |
+
|
431 |
+
# save spectrogram
|
432 |
+
|
433 |
+
|
434 |
+
def save_spectrogram(spectrogram, path):
|
435 |
+
plt.figure(figsize=(12, 4))
|
436 |
+
plt.imshow(spectrogram, origin="lower", aspect="auto")
|
437 |
+
plt.colorbar()
|
438 |
+
plt.savefig(path)
|
439 |
+
plt.close()
|
src/f5_tts/model/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from f5_tts.model.cfm import CFM
|
2 |
+
|
3 |
+
from f5_tts.model.backbones.unett import UNetT
|
4 |
+
from f5_tts.model.backbones.dit import DiT
|
5 |
+
from f5_tts.model.backbones.mmdit import MMDiT
|
6 |
+
|
7 |
+
from f5_tts.model.trainer import Trainer
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = ["CFM", "UNetT", "DiT", "MMDiT", "Trainer"]
|
src/f5_tts/model/backbones/README.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Backbones quick introduction
|
2 |
+
|
3 |
+
|
4 |
+
### unett.py
|
5 |
+
- flat unet transformer
|
6 |
+
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
7 |
+
- update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
|
8 |
+
|
9 |
+
### dit.py
|
10 |
+
- adaln-zero dit
|
11 |
+
- embedded timestep as condition
|
12 |
+
- concatted noised_input + masked_cond + embedded_text, linear proj in
|
13 |
+
- possible abs pos emb & convnextv2 blocks for embedded text before concat
|
14 |
+
- possible long skip connection (first layer to last layer)
|
15 |
+
|
16 |
+
### mmdit.py
|
17 |
+
- sd3 structure
|
18 |
+
- timestep as condition
|
19 |
+
- left stream: text embedded and applied a abs pos emb
|
20 |
+
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|
src/f5_tts/model/backbones/dit.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
|
16 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
17 |
+
|
18 |
+
from f5_tts.model.modules import (
|
19 |
+
TimestepEmbedding,
|
20 |
+
ConvNeXtV2Block,
|
21 |
+
ConvPositionEmbedding,
|
22 |
+
DiTBlock,
|
23 |
+
AdaLayerNormZero_Final,
|
24 |
+
precompute_freqs_cis,
|
25 |
+
get_pos_embed_indices,
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
# Text embedding
|
30 |
+
|
31 |
+
|
32 |
+
class TextEmbedding(nn.Module):
|
33 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
34 |
+
super().__init__()
|
35 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
36 |
+
|
37 |
+
if conv_layers > 0:
|
38 |
+
self.extra_modeling = True
|
39 |
+
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
40 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
41 |
+
self.text_blocks = nn.Sequential(
|
42 |
+
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
43 |
+
)
|
44 |
+
else:
|
45 |
+
self.extra_modeling = False
|
46 |
+
|
47 |
+
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
48 |
+
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
49 |
+
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
50 |
+
batch, text_len = text.shape[0], text.shape[1]
|
51 |
+
text = F.pad(text, (0, seq_len - text_len), value=0)
|
52 |
+
|
53 |
+
if drop_text: # cfg for text
|
54 |
+
text = torch.zeros_like(text)
|
55 |
+
|
56 |
+
text = self.text_embed(text) # b n -> b n d
|
57 |
+
|
58 |
+
# possible extra modeling
|
59 |
+
if self.extra_modeling:
|
60 |
+
# sinus pos emb
|
61 |
+
batch_start = torch.zeros((batch,), dtype=torch.long)
|
62 |
+
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
63 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
64 |
+
text = text + text_pos_embed
|
65 |
+
|
66 |
+
# convnextv2 blocks
|
67 |
+
text = self.text_blocks(text)
|
68 |
+
|
69 |
+
return text
|
70 |
+
|
71 |
+
|
72 |
+
# noised input audio and context mixing embedding
|
73 |
+
|
74 |
+
|
75 |
+
class InputEmbedding(nn.Module):
|
76 |
+
def __init__(self, mel_dim, text_dim, out_dim):
|
77 |
+
super().__init__()
|
78 |
+
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
79 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
80 |
+
|
81 |
+
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
82 |
+
if drop_audio_cond: # cfg for cond audio
|
83 |
+
cond = torch.zeros_like(cond)
|
84 |
+
|
85 |
+
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
86 |
+
x = self.conv_pos_embed(x) + x
|
87 |
+
return x
|
88 |
+
|
89 |
+
|
90 |
+
# Transformer backbone using DiT blocks
|
91 |
+
|
92 |
+
|
93 |
+
class DiT(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
*,
|
97 |
+
dim,
|
98 |
+
depth=8,
|
99 |
+
heads=8,
|
100 |
+
dim_head=64,
|
101 |
+
dropout=0.1,
|
102 |
+
ff_mult=4,
|
103 |
+
mel_dim=100,
|
104 |
+
text_num_embeds=256,
|
105 |
+
text_dim=None,
|
106 |
+
conv_layers=0,
|
107 |
+
long_skip_connection=False,
|
108 |
+
):
|
109 |
+
super().__init__()
|
110 |
+
|
111 |
+
self.time_embed = TimestepEmbedding(dim)
|
112 |
+
if text_dim is None:
|
113 |
+
text_dim = mel_dim
|
114 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
115 |
+
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
116 |
+
|
117 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
118 |
+
|
119 |
+
self.dim = dim
|
120 |
+
self.depth = depth
|
121 |
+
|
122 |
+
self.transformer_blocks = nn.ModuleList(
|
123 |
+
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
124 |
+
)
|
125 |
+
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
126 |
+
|
127 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
128 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
129 |
+
|
130 |
+
def forward(
|
131 |
+
self,
|
132 |
+
x: float["b n d"], # nosied input audio # noqa: F722
|
133 |
+
cond: float["b n d"], # masked cond audio # noqa: F722
|
134 |
+
text: int["b nt"], # text # noqa: F722
|
135 |
+
time: float["b"] | float[""], # time step # noqa: F821 F722
|
136 |
+
drop_audio_cond, # cfg for cond audio
|
137 |
+
drop_text, # cfg for text
|
138 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
139 |
+
):
|
140 |
+
batch, seq_len = x.shape[0], x.shape[1]
|
141 |
+
if time.ndim == 0:
|
142 |
+
time = time.repeat(batch)
|
143 |
+
|
144 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
145 |
+
t = self.time_embed(time)
|
146 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
147 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
148 |
+
|
149 |
+
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
150 |
+
|
151 |
+
if self.long_skip_connection is not None:
|
152 |
+
residual = x
|
153 |
+
|
154 |
+
for block in self.transformer_blocks:
|
155 |
+
x = block(x, t, mask=mask, rope=rope)
|
156 |
+
|
157 |
+
if self.long_skip_connection is not None:
|
158 |
+
x = self.long_skip_connection(torch.cat((x, residual), dim=-1))
|
159 |
+
|
160 |
+
x = self.norm_out(x, t)
|
161 |
+
output = self.proj_out(x)
|
162 |
+
|
163 |
+
return output
|
src/f5_tts/model/backbones/mmdit.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
16 |
+
|
17 |
+
from f5_tts.model.modules import (
|
18 |
+
TimestepEmbedding,
|
19 |
+
ConvPositionEmbedding,
|
20 |
+
MMDiTBlock,
|
21 |
+
AdaLayerNormZero_Final,
|
22 |
+
precompute_freqs_cis,
|
23 |
+
get_pos_embed_indices,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
# text embedding
|
28 |
+
|
29 |
+
|
30 |
+
class TextEmbedding(nn.Module):
|
31 |
+
def __init__(self, out_dim, text_num_embeds):
|
32 |
+
super().__init__()
|
33 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
34 |
+
|
35 |
+
self.precompute_max_pos = 1024
|
36 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
37 |
+
|
38 |
+
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
|
39 |
+
text = text + 1
|
40 |
+
if drop_text:
|
41 |
+
text = torch.zeros_like(text)
|
42 |
+
text = self.text_embed(text)
|
43 |
+
|
44 |
+
# sinus pos emb
|
45 |
+
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
46 |
+
batch_text_len = text.shape[1]
|
47 |
+
pos_idx = get_pos_embed_indices(batch_start, batch_text_len, max_pos=self.precompute_max_pos)
|
48 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
49 |
+
|
50 |
+
text = text + text_pos_embed
|
51 |
+
|
52 |
+
return text
|
53 |
+
|
54 |
+
|
55 |
+
# noised input & masked cond audio embedding
|
56 |
+
|
57 |
+
|
58 |
+
class AudioEmbedding(nn.Module):
|
59 |
+
def __init__(self, in_dim, out_dim):
|
60 |
+
super().__init__()
|
61 |
+
self.linear = nn.Linear(2 * in_dim, out_dim)
|
62 |
+
self.conv_pos_embed = ConvPositionEmbedding(out_dim)
|
63 |
+
|
64 |
+
def forward(self, x: float["b n d"], cond: float["b n d"], drop_audio_cond=False): # noqa: F722
|
65 |
+
if drop_audio_cond:
|
66 |
+
cond = torch.zeros_like(cond)
|
67 |
+
x = torch.cat((x, cond), dim=-1)
|
68 |
+
x = self.linear(x)
|
69 |
+
x = self.conv_pos_embed(x) + x
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
# Transformer backbone using MM-DiT blocks
|
74 |
+
|
75 |
+
|
76 |
+
class MMDiT(nn.Module):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
*,
|
80 |
+
dim,
|
81 |
+
depth=8,
|
82 |
+
heads=8,
|
83 |
+
dim_head=64,
|
84 |
+
dropout=0.1,
|
85 |
+
ff_mult=4,
|
86 |
+
text_num_embeds=256,
|
87 |
+
mel_dim=100,
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
self.time_embed = TimestepEmbedding(dim)
|
92 |
+
self.text_embed = TextEmbedding(dim, text_num_embeds)
|
93 |
+
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
94 |
+
|
95 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
96 |
+
|
97 |
+
self.dim = dim
|
98 |
+
self.depth = depth
|
99 |
+
|
100 |
+
self.transformer_blocks = nn.ModuleList(
|
101 |
+
[
|
102 |
+
MMDiTBlock(
|
103 |
+
dim=dim,
|
104 |
+
heads=heads,
|
105 |
+
dim_head=dim_head,
|
106 |
+
dropout=dropout,
|
107 |
+
ff_mult=ff_mult,
|
108 |
+
context_pre_only=i == depth - 1,
|
109 |
+
)
|
110 |
+
for i in range(depth)
|
111 |
+
]
|
112 |
+
)
|
113 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
114 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
115 |
+
|
116 |
+
def forward(
|
117 |
+
self,
|
118 |
+
x: float["b n d"], # nosied input audio # noqa: F722
|
119 |
+
cond: float["b n d"], # masked cond audio # noqa: F722
|
120 |
+
text: int["b nt"], # text # noqa: F722
|
121 |
+
time: float["b"] | float[""], # time step # noqa: F821 F722
|
122 |
+
drop_audio_cond, # cfg for cond audio
|
123 |
+
drop_text, # cfg for text
|
124 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
125 |
+
):
|
126 |
+
batch = x.shape[0]
|
127 |
+
if time.ndim == 0:
|
128 |
+
time = time.repeat(batch)
|
129 |
+
|
130 |
+
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
131 |
+
t = self.time_embed(time)
|
132 |
+
c = self.text_embed(text, drop_text=drop_text)
|
133 |
+
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
134 |
+
|
135 |
+
seq_len = x.shape[1]
|
136 |
+
text_len = text.shape[1]
|
137 |
+
rope_audio = self.rotary_embed.forward_from_seq_len(seq_len)
|
138 |
+
rope_text = self.rotary_embed.forward_from_seq_len(text_len)
|
139 |
+
|
140 |
+
for block in self.transformer_blocks:
|
141 |
+
c, x = block(x, c, t, mask=mask, rope=rope_audio, c_rope=rope_text)
|
142 |
+
|
143 |
+
x = self.norm_out(x, t)
|
144 |
+
output = self.proj_out(x)
|
145 |
+
|
146 |
+
return output
|
src/f5_tts/model/backbones/unett.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Literal
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torch import nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from x_transformers import RMSNorm
|
18 |
+
from x_transformers.x_transformers import RotaryEmbedding
|
19 |
+
|
20 |
+
from f5_tts.model.modules import (
|
21 |
+
TimestepEmbedding,
|
22 |
+
ConvNeXtV2Block,
|
23 |
+
ConvPositionEmbedding,
|
24 |
+
Attention,
|
25 |
+
AttnProcessor,
|
26 |
+
FeedForward,
|
27 |
+
precompute_freqs_cis,
|
28 |
+
get_pos_embed_indices,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
# Text embedding
|
33 |
+
|
34 |
+
|
35 |
+
class TextEmbedding(nn.Module):
|
36 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
37 |
+
super().__init__()
|
38 |
+
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
39 |
+
|
40 |
+
if conv_layers > 0:
|
41 |
+
self.extra_modeling = True
|
42 |
+
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
43 |
+
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False)
|
44 |
+
self.text_blocks = nn.Sequential(
|
45 |
+
*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]
|
46 |
+
)
|
47 |
+
else:
|
48 |
+
self.extra_modeling = False
|
49 |
+
|
50 |
+
def forward(self, text: int["b nt"], seq_len, drop_text=False): # noqa: F722
|
51 |
+
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx()
|
52 |
+
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
53 |
+
batch, text_len = text.shape[0], text.shape[1]
|
54 |
+
text = F.pad(text, (0, seq_len - text_len), value=0)
|
55 |
+
|
56 |
+
if drop_text: # cfg for text
|
57 |
+
text = torch.zeros_like(text)
|
58 |
+
|
59 |
+
text = self.text_embed(text) # b n -> b n d
|
60 |
+
|
61 |
+
# possible extra modeling
|
62 |
+
if self.extra_modeling:
|
63 |
+
# sinus pos emb
|
64 |
+
batch_start = torch.zeros((batch,), dtype=torch.long)
|
65 |
+
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos)
|
66 |
+
text_pos_embed = self.freqs_cis[pos_idx]
|
67 |
+
text = text + text_pos_embed
|
68 |
+
|
69 |
+
# convnextv2 blocks
|
70 |
+
text = self.text_blocks(text)
|
71 |
+
|
72 |
+
return text
|
73 |
+
|
74 |
+
|
75 |
+
# noised input audio and context mixing embedding
|
76 |
+
|
77 |
+
|
78 |
+
class InputEmbedding(nn.Module):
|
79 |
+
def __init__(self, mel_dim, text_dim, out_dim):
|
80 |
+
super().__init__()
|
81 |
+
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim)
|
82 |
+
self.conv_pos_embed = ConvPositionEmbedding(dim=out_dim)
|
83 |
+
|
84 |
+
def forward(self, x: float["b n d"], cond: float["b n d"], text_embed: float["b n d"], drop_audio_cond=False): # noqa: F722
|
85 |
+
if drop_audio_cond: # cfg for cond audio
|
86 |
+
cond = torch.zeros_like(cond)
|
87 |
+
|
88 |
+
x = self.proj(torch.cat((x, cond, text_embed), dim=-1))
|
89 |
+
x = self.conv_pos_embed(x) + x
|
90 |
+
return x
|
91 |
+
|
92 |
+
|
93 |
+
# Flat UNet Transformer backbone
|
94 |
+
|
95 |
+
|
96 |
+
class UNetT(nn.Module):
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
*,
|
100 |
+
dim,
|
101 |
+
depth=8,
|
102 |
+
heads=8,
|
103 |
+
dim_head=64,
|
104 |
+
dropout=0.1,
|
105 |
+
ff_mult=4,
|
106 |
+
mel_dim=100,
|
107 |
+
text_num_embeds=256,
|
108 |
+
text_dim=None,
|
109 |
+
conv_layers=0,
|
110 |
+
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
assert depth % 2 == 0, "UNet-Transformer's depth should be even."
|
114 |
+
|
115 |
+
self.time_embed = TimestepEmbedding(dim)
|
116 |
+
if text_dim is None:
|
117 |
+
text_dim = mel_dim
|
118 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
119 |
+
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
120 |
+
|
121 |
+
self.rotary_embed = RotaryEmbedding(dim_head)
|
122 |
+
|
123 |
+
# transformer layers & skip connections
|
124 |
+
|
125 |
+
self.dim = dim
|
126 |
+
self.skip_connect_type = skip_connect_type
|
127 |
+
needs_skip_proj = skip_connect_type == "concat"
|
128 |
+
|
129 |
+
self.depth = depth
|
130 |
+
self.layers = nn.ModuleList([])
|
131 |
+
|
132 |
+
for idx in range(depth):
|
133 |
+
is_later_half = idx >= (depth // 2)
|
134 |
+
|
135 |
+
attn_norm = RMSNorm(dim)
|
136 |
+
attn = Attention(
|
137 |
+
processor=AttnProcessor(),
|
138 |
+
dim=dim,
|
139 |
+
heads=heads,
|
140 |
+
dim_head=dim_head,
|
141 |
+
dropout=dropout,
|
142 |
+
)
|
143 |
+
|
144 |
+
ff_norm = RMSNorm(dim)
|
145 |
+
ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
146 |
+
|
147 |
+
skip_proj = nn.Linear(dim * 2, dim, bias=False) if needs_skip_proj and is_later_half else None
|
148 |
+
|
149 |
+
self.layers.append(
|
150 |
+
nn.ModuleList(
|
151 |
+
[
|
152 |
+
skip_proj,
|
153 |
+
attn_norm,
|
154 |
+
attn,
|
155 |
+
ff_norm,
|
156 |
+
ff,
|
157 |
+
]
|
158 |
+
)
|
159 |
+
)
|
160 |
+
|
161 |
+
self.norm_out = RMSNorm(dim)
|
162 |
+
self.proj_out = nn.Linear(dim, mel_dim)
|
163 |
+
|
164 |
+
def forward(
|
165 |
+
self,
|
166 |
+
x: float["b n d"], # nosied input audio # noqa: F722
|
167 |
+
cond: float["b n d"], # masked cond audio # noqa: F722
|
168 |
+
text: int["b nt"], # text # noqa: F722
|
169 |
+
time: float["b"] | float[""], # time step # noqa: F821 F722
|
170 |
+
drop_audio_cond, # cfg for cond audio
|
171 |
+
drop_text, # cfg for text
|
172 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
173 |
+
):
|
174 |
+
batch, seq_len = x.shape[0], x.shape[1]
|
175 |
+
if time.ndim == 0:
|
176 |
+
time = time.repeat(batch)
|
177 |
+
|
178 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
179 |
+
t = self.time_embed(time)
|
180 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
181 |
+
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
182 |
+
|
183 |
+
# postfix time t to input x, [b n d] -> [b n+1 d]
|
184 |
+
x = torch.cat([t.unsqueeze(1), x], dim=1) # pack t to x
|
185 |
+
if mask is not None:
|
186 |
+
mask = F.pad(mask, (1, 0), value=1)
|
187 |
+
|
188 |
+
rope = self.rotary_embed.forward_from_seq_len(seq_len + 1)
|
189 |
+
|
190 |
+
# flat unet transformer
|
191 |
+
skip_connect_type = self.skip_connect_type
|
192 |
+
skips = []
|
193 |
+
for idx, (maybe_skip_proj, attn_norm, attn, ff_norm, ff) in enumerate(self.layers):
|
194 |
+
layer = idx + 1
|
195 |
+
|
196 |
+
# skip connection logic
|
197 |
+
is_first_half = layer <= (self.depth // 2)
|
198 |
+
is_later_half = not is_first_half
|
199 |
+
|
200 |
+
if is_first_half:
|
201 |
+
skips.append(x)
|
202 |
+
|
203 |
+
if is_later_half:
|
204 |
+
skip = skips.pop()
|
205 |
+
if skip_connect_type == "concat":
|
206 |
+
x = torch.cat((x, skip), dim=-1)
|
207 |
+
x = maybe_skip_proj(x)
|
208 |
+
elif skip_connect_type == "add":
|
209 |
+
x = x + skip
|
210 |
+
|
211 |
+
# attention and feedforward blocks
|
212 |
+
x = attn(attn_norm(x), rope=rope, mask=mask) + x
|
213 |
+
x = ff(ff_norm(x)) + x
|
214 |
+
|
215 |
+
assert len(skips) == 0
|
216 |
+
|
217 |
+
x = self.norm_out(x)[:, 1:, :] # unpack t from x
|
218 |
+
|
219 |
+
return self.proj_out(x)
|
src/f5_tts/model/cfm.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Callable
|
12 |
+
from random import random
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from torch.nn.utils.rnn import pad_sequence
|
18 |
+
|
19 |
+
from torchdiffeq import odeint
|
20 |
+
|
21 |
+
from f5_tts.model.modules import MelSpec
|
22 |
+
from f5_tts.model.utils import (
|
23 |
+
default,
|
24 |
+
exists,
|
25 |
+
list_str_to_idx,
|
26 |
+
list_str_to_tensor,
|
27 |
+
lens_to_mask,
|
28 |
+
mask_from_frac_lengths,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
class CFM(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
transformer: nn.Module,
|
36 |
+
sigma=0.0,
|
37 |
+
odeint_kwargs: dict = dict(
|
38 |
+
# atol = 1e-5,
|
39 |
+
# rtol = 1e-5,
|
40 |
+
method="euler" # 'midpoint'
|
41 |
+
),
|
42 |
+
audio_drop_prob=0.3,
|
43 |
+
cond_drop_prob=0.2,
|
44 |
+
num_channels=None,
|
45 |
+
mel_spec_module: nn.Module | None = None,
|
46 |
+
mel_spec_kwargs: dict = dict(),
|
47 |
+
frac_lengths_mask: tuple[float, float] = (0.7, 1.0),
|
48 |
+
vocab_char_map: dict[str:int] | None = None,
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.frac_lengths_mask = frac_lengths_mask
|
53 |
+
|
54 |
+
# mel spec
|
55 |
+
self.mel_spec = default(mel_spec_module, MelSpec(**mel_spec_kwargs))
|
56 |
+
num_channels = default(num_channels, self.mel_spec.n_mel_channels)
|
57 |
+
self.num_channels = num_channels
|
58 |
+
|
59 |
+
# classifier-free guidance
|
60 |
+
self.audio_drop_prob = audio_drop_prob
|
61 |
+
self.cond_drop_prob = cond_drop_prob
|
62 |
+
|
63 |
+
# transformer
|
64 |
+
self.transformer = transformer
|
65 |
+
dim = transformer.dim
|
66 |
+
self.dim = dim
|
67 |
+
|
68 |
+
# conditional flow related
|
69 |
+
self.sigma = sigma
|
70 |
+
|
71 |
+
# sampling related
|
72 |
+
self.odeint_kwargs = odeint_kwargs
|
73 |
+
|
74 |
+
# vocab map for tokenization
|
75 |
+
self.vocab_char_map = vocab_char_map
|
76 |
+
|
77 |
+
@property
|
78 |
+
def device(self):
|
79 |
+
return next(self.parameters()).device
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def sample(
|
83 |
+
self,
|
84 |
+
cond: float["b n d"] | float["b nw"], # noqa: F722
|
85 |
+
text: int["b nt"] | list[str], # noqa: F722
|
86 |
+
duration: int | int["b"], # noqa: F821
|
87 |
+
*,
|
88 |
+
lens: int["b"] | None = None, # noqa: F821
|
89 |
+
steps=32,
|
90 |
+
cfg_strength=1.0,
|
91 |
+
sway_sampling_coef=None,
|
92 |
+
seed: int | None = None,
|
93 |
+
max_duration=4096,
|
94 |
+
vocoder: Callable[[float["b d n"]], float["b nw"]] | None = None, # noqa: F722
|
95 |
+
no_ref_audio=False,
|
96 |
+
duplicate_test=False,
|
97 |
+
t_inter=0.1,
|
98 |
+
edit_mask=None,
|
99 |
+
):
|
100 |
+
self.eval()
|
101 |
+
|
102 |
+
if next(self.parameters()).dtype == torch.float16:
|
103 |
+
cond = cond.half()
|
104 |
+
|
105 |
+
# raw wave
|
106 |
+
|
107 |
+
if cond.ndim == 2:
|
108 |
+
cond = self.mel_spec(cond)
|
109 |
+
cond = cond.permute(0, 2, 1)
|
110 |
+
assert cond.shape[-1] == self.num_channels
|
111 |
+
|
112 |
+
batch, cond_seq_len, device = *cond.shape[:2], cond.device
|
113 |
+
if not exists(lens):
|
114 |
+
lens = torch.full((batch,), cond_seq_len, device=device, dtype=torch.long)
|
115 |
+
|
116 |
+
# text
|
117 |
+
|
118 |
+
if isinstance(text, list):
|
119 |
+
if exists(self.vocab_char_map):
|
120 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
121 |
+
else:
|
122 |
+
text = list_str_to_tensor(text).to(device)
|
123 |
+
assert text.shape[0] == batch
|
124 |
+
|
125 |
+
if exists(text):
|
126 |
+
text_lens = (text != -1).sum(dim=-1)
|
127 |
+
lens = torch.maximum(text_lens, lens) # make sure lengths are at least those of the text characters
|
128 |
+
|
129 |
+
# duration
|
130 |
+
|
131 |
+
cond_mask = lens_to_mask(lens)
|
132 |
+
if edit_mask is not None:
|
133 |
+
cond_mask = cond_mask & edit_mask
|
134 |
+
|
135 |
+
if isinstance(duration, int):
|
136 |
+
duration = torch.full((batch,), duration, device=device, dtype=torch.long)
|
137 |
+
|
138 |
+
duration = torch.maximum(lens + 1, duration) # just add one token so something is generated
|
139 |
+
duration = duration.clamp(max=max_duration)
|
140 |
+
max_duration = duration.amax()
|
141 |
+
|
142 |
+
# duplicate test corner for inner time step oberservation
|
143 |
+
if duplicate_test:
|
144 |
+
test_cond = F.pad(cond, (0, 0, cond_seq_len, max_duration - 2 * cond_seq_len), value=0.0)
|
145 |
+
|
146 |
+
cond = F.pad(cond, (0, 0, 0, max_duration - cond_seq_len), value=0.0)
|
147 |
+
cond_mask = F.pad(cond_mask, (0, max_duration - cond_mask.shape[-1]), value=False)
|
148 |
+
cond_mask = cond_mask.unsqueeze(-1)
|
149 |
+
step_cond = torch.where(
|
150 |
+
cond_mask, cond, torch.zeros_like(cond)
|
151 |
+
) # allow direct control (cut cond audio) with lens passed in
|
152 |
+
|
153 |
+
if batch > 1:
|
154 |
+
mask = lens_to_mask(duration)
|
155 |
+
else: # save memory and speed up, as single inference need no mask currently
|
156 |
+
mask = None
|
157 |
+
|
158 |
+
# test for no ref audio
|
159 |
+
if no_ref_audio:
|
160 |
+
cond = torch.zeros_like(cond)
|
161 |
+
|
162 |
+
# neural ode
|
163 |
+
|
164 |
+
def fn(t, x):
|
165 |
+
# at each step, conditioning is fixed
|
166 |
+
# step_cond = torch.where(cond_mask, cond, torch.zeros_like(cond))
|
167 |
+
|
168 |
+
# predict flow
|
169 |
+
pred = self.transformer(
|
170 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
171 |
+
)
|
172 |
+
if cfg_strength < 1e-5:
|
173 |
+
return pred
|
174 |
+
|
175 |
+
null_pred = self.transformer(
|
176 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
177 |
+
)
|
178 |
+
return pred + (pred - null_pred) * cfg_strength
|
179 |
+
|
180 |
+
# noise input
|
181 |
+
# to make sure batch inference result is same with different batch size, and for sure single inference
|
182 |
+
# still some difference maybe due to convolutional layers
|
183 |
+
y0 = []
|
184 |
+
for dur in duration:
|
185 |
+
if exists(seed):
|
186 |
+
torch.manual_seed(seed)
|
187 |
+
y0.append(torch.randn(dur, self.num_channels, device=self.device, dtype=step_cond.dtype))
|
188 |
+
y0 = pad_sequence(y0, padding_value=0, batch_first=True)
|
189 |
+
|
190 |
+
t_start = 0
|
191 |
+
|
192 |
+
# duplicate test corner for inner time step oberservation
|
193 |
+
if duplicate_test:
|
194 |
+
t_start = t_inter
|
195 |
+
y0 = (1 - t_start) * y0 + t_start * test_cond
|
196 |
+
steps = int(steps * (1 - t_start))
|
197 |
+
|
198 |
+
t = torch.linspace(t_start, 1, steps, device=self.device, dtype=step_cond.dtype)
|
199 |
+
if sway_sampling_coef is not None:
|
200 |
+
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
201 |
+
|
202 |
+
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
203 |
+
|
204 |
+
sampled = trajectory[-1]
|
205 |
+
out = sampled
|
206 |
+
out = torch.where(cond_mask, cond, out)
|
207 |
+
|
208 |
+
if exists(vocoder):
|
209 |
+
out = out.permute(0, 2, 1)
|
210 |
+
out = vocoder(out)
|
211 |
+
|
212 |
+
return out, trajectory
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
inp: float["b n d"] | float["b nw"], # mel or raw wave # noqa: F722
|
217 |
+
text: int["b nt"] | list[str], # noqa: F722
|
218 |
+
*,
|
219 |
+
lens: int["b"] | None = None, # noqa: F821
|
220 |
+
noise_scheduler: str | None = None,
|
221 |
+
):
|
222 |
+
# handle raw wave
|
223 |
+
if inp.ndim == 2:
|
224 |
+
inp = self.mel_spec(inp)
|
225 |
+
inp = inp.permute(0, 2, 1)
|
226 |
+
assert inp.shape[-1] == self.num_channels
|
227 |
+
|
228 |
+
batch, seq_len, dtype, device, _σ1 = *inp.shape[:2], inp.dtype, self.device, self.sigma
|
229 |
+
|
230 |
+
# handle text as string
|
231 |
+
if isinstance(text, list):
|
232 |
+
if exists(self.vocab_char_map):
|
233 |
+
text = list_str_to_idx(text, self.vocab_char_map).to(device)
|
234 |
+
else:
|
235 |
+
text = list_str_to_tensor(text).to(device)
|
236 |
+
assert text.shape[0] == batch
|
237 |
+
|
238 |
+
# lens and mask
|
239 |
+
if not exists(lens):
|
240 |
+
lens = torch.full((batch,), seq_len, device=device)
|
241 |
+
|
242 |
+
mask = lens_to_mask(lens, length=seq_len) # useless here, as collate_fn will pad to max length in batch
|
243 |
+
|
244 |
+
# get a random span to mask out for training conditionally
|
245 |
+
frac_lengths = torch.zeros((batch,), device=self.device).float().uniform_(*self.frac_lengths_mask)
|
246 |
+
rand_span_mask = mask_from_frac_lengths(lens, frac_lengths)
|
247 |
+
|
248 |
+
if exists(mask):
|
249 |
+
rand_span_mask &= mask
|
250 |
+
|
251 |
+
# mel is x1
|
252 |
+
x1 = inp
|
253 |
+
|
254 |
+
# x0 is gaussian noise
|
255 |
+
x0 = torch.randn_like(x1)
|
256 |
+
|
257 |
+
# time step
|
258 |
+
time = torch.rand((batch,), dtype=dtype, device=self.device)
|
259 |
+
# TODO. noise_scheduler
|
260 |
+
|
261 |
+
# sample xt (φ_t(x) in the paper)
|
262 |
+
t = time.unsqueeze(-1).unsqueeze(-1)
|
263 |
+
φ = (1 - t) * x0 + t * x1
|
264 |
+
flow = x1 - x0
|
265 |
+
|
266 |
+
# only predict what is within the random mask span for infilling
|
267 |
+
cond = torch.where(rand_span_mask[..., None], torch.zeros_like(x1), x1)
|
268 |
+
|
269 |
+
# transformer and cfg training with a drop rate
|
270 |
+
drop_audio_cond = random() < self.audio_drop_prob # p_drop in voicebox paper
|
271 |
+
if random() < self.cond_drop_prob: # p_uncond in voicebox paper
|
272 |
+
drop_audio_cond = True
|
273 |
+
drop_text = True
|
274 |
+
else:
|
275 |
+
drop_text = False
|
276 |
+
|
277 |
+
# if want rigourously mask out padding, record in collate_fn in dataset.py, and pass in here
|
278 |
+
# adding mask will use more memory, thus also need to adjust batchsampler with scaled down threshold for long sequences
|
279 |
+
pred = self.transformer(
|
280 |
+
x=φ, cond=cond, text=text, time=time, drop_audio_cond=drop_audio_cond, drop_text=drop_text
|
281 |
+
)
|
282 |
+
|
283 |
+
# flow matching loss
|
284 |
+
loss = F.mse_loss(pred, flow, reduction="none")
|
285 |
+
loss = loss[rand_span_mask]
|
286 |
+
|
287 |
+
return loss.mean(), cond, pred
|
src/f5_tts/model/dataset.py
ADDED
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
from importlib.resources import files
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchaudio
|
9 |
+
from torch import nn
|
10 |
+
from torch.utils.data import Dataset, Sampler
|
11 |
+
from datasets import load_from_disk
|
12 |
+
from datasets import Dataset as Dataset_
|
13 |
+
|
14 |
+
from f5_tts.model.modules import MelSpec
|
15 |
+
from f5_tts.model.utils import default
|
16 |
+
|
17 |
+
|
18 |
+
class HFDataset(Dataset):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
hf_dataset: Dataset,
|
22 |
+
target_sample_rate=24_000,
|
23 |
+
n_mel_channels=100,
|
24 |
+
hop_length=256,
|
25 |
+
):
|
26 |
+
self.data = hf_dataset
|
27 |
+
self.target_sample_rate = target_sample_rate
|
28 |
+
self.hop_length = hop_length
|
29 |
+
self.mel_spectrogram = MelSpec(
|
30 |
+
target_sample_rate=target_sample_rate, n_mel_channels=n_mel_channels, hop_length=hop_length
|
31 |
+
)
|
32 |
+
|
33 |
+
def get_frame_len(self, index):
|
34 |
+
row = self.data[index]
|
35 |
+
audio = row["audio"]["array"]
|
36 |
+
sample_rate = row["audio"]["sampling_rate"]
|
37 |
+
return audio.shape[-1] / sample_rate * self.target_sample_rate / self.hop_length
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return len(self.data)
|
41 |
+
|
42 |
+
def __getitem__(self, index):
|
43 |
+
row = self.data[index]
|
44 |
+
audio = row["audio"]["array"]
|
45 |
+
|
46 |
+
# logger.info(f"Audio shape: {audio.shape}")
|
47 |
+
|
48 |
+
sample_rate = row["audio"]["sampling_rate"]
|
49 |
+
duration = audio.shape[-1] / sample_rate
|
50 |
+
|
51 |
+
if duration > 30 or duration < 0.3:
|
52 |
+
return self.__getitem__((index + 1) % len(self.data))
|
53 |
+
|
54 |
+
audio_tensor = torch.from_numpy(audio).float()
|
55 |
+
|
56 |
+
if sample_rate != self.target_sample_rate:
|
57 |
+
resampler = torchaudio.transforms.Resample(sample_rate, self.target_sample_rate)
|
58 |
+
audio_tensor = resampler(audio_tensor)
|
59 |
+
|
60 |
+
audio_tensor = audio_tensor.unsqueeze(0) # 't -> 1 t')
|
61 |
+
|
62 |
+
mel_spec = self.mel_spectrogram(audio_tensor)
|
63 |
+
|
64 |
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t'
|
65 |
+
|
66 |
+
text = row["text"]
|
67 |
+
|
68 |
+
return dict(
|
69 |
+
mel_spec=mel_spec,
|
70 |
+
text=text,
|
71 |
+
)
|
72 |
+
|
73 |
+
|
74 |
+
class CustomDataset(Dataset):
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
custom_dataset: Dataset,
|
78 |
+
durations=None,
|
79 |
+
target_sample_rate=24_000,
|
80 |
+
hop_length=256,
|
81 |
+
n_mel_channels=100,
|
82 |
+
preprocessed_mel=False,
|
83 |
+
mel_spec_module: nn.Module | None = None,
|
84 |
+
):
|
85 |
+
self.data = custom_dataset
|
86 |
+
self.durations = durations
|
87 |
+
self.target_sample_rate = target_sample_rate
|
88 |
+
self.hop_length = hop_length
|
89 |
+
self.preprocessed_mel = preprocessed_mel
|
90 |
+
|
91 |
+
if not preprocessed_mel:
|
92 |
+
self.mel_spectrogram = default(
|
93 |
+
mel_spec_module,
|
94 |
+
MelSpec(
|
95 |
+
target_sample_rate=target_sample_rate,
|
96 |
+
hop_length=hop_length,
|
97 |
+
n_mel_channels=n_mel_channels,
|
98 |
+
),
|
99 |
+
)
|
100 |
+
|
101 |
+
def get_frame_len(self, index):
|
102 |
+
if (
|
103 |
+
self.durations is not None
|
104 |
+
): # Please make sure the separately provided durations are correct, otherwise 99.99% OOM
|
105 |
+
return self.durations[index] * self.target_sample_rate / self.hop_length
|
106 |
+
return self.data[index]["duration"] * self.target_sample_rate / self.hop_length
|
107 |
+
|
108 |
+
def __len__(self):
|
109 |
+
return len(self.data)
|
110 |
+
|
111 |
+
def __getitem__(self, index):
|
112 |
+
row = self.data[index]
|
113 |
+
audio_path = row["audio_path"]
|
114 |
+
text = row["text"]
|
115 |
+
duration = row["duration"]
|
116 |
+
|
117 |
+
if self.preprocessed_mel:
|
118 |
+
mel_spec = torch.tensor(row["mel_spec"])
|
119 |
+
|
120 |
+
else:
|
121 |
+
audio, source_sample_rate = torchaudio.load(audio_path)
|
122 |
+
if audio.shape[0] > 1:
|
123 |
+
audio = torch.mean(audio, dim=0, keepdim=True)
|
124 |
+
|
125 |
+
if duration > 30 or duration < 0.3:
|
126 |
+
return self.__getitem__((index + 1) % len(self.data))
|
127 |
+
|
128 |
+
if source_sample_rate != self.target_sample_rate:
|
129 |
+
resampler = torchaudio.transforms.Resample(source_sample_rate, self.target_sample_rate)
|
130 |
+
audio = resampler(audio)
|
131 |
+
|
132 |
+
mel_spec = self.mel_spectrogram(audio)
|
133 |
+
mel_spec = mel_spec.squeeze(0) # '1 d t -> d t')
|
134 |
+
|
135 |
+
return dict(
|
136 |
+
mel_spec=mel_spec,
|
137 |
+
text=text,
|
138 |
+
)
|
139 |
+
|
140 |
+
|
141 |
+
# Dynamic Batch Sampler
|
142 |
+
|
143 |
+
|
144 |
+
class DynamicBatchSampler(Sampler[list[int]]):
|
145 |
+
"""Extension of Sampler that will do the following:
|
146 |
+
1. Change the batch size (essentially number of sequences)
|
147 |
+
in a batch to ensure that the total number of frames are less
|
148 |
+
than a certain threshold.
|
149 |
+
2. Make sure the padding efficiency in the batch is high.
|
150 |
+
"""
|
151 |
+
|
152 |
+
def __init__(
|
153 |
+
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
|
154 |
+
):
|
155 |
+
self.sampler = sampler
|
156 |
+
self.frames_threshold = frames_threshold
|
157 |
+
self.max_samples = max_samples
|
158 |
+
|
159 |
+
indices, batches = [], []
|
160 |
+
data_source = self.sampler.data_source
|
161 |
+
|
162 |
+
for idx in tqdm(
|
163 |
+
self.sampler, desc="Sorting with sampler... if slow, check whether dataset is provided with duration"
|
164 |
+
):
|
165 |
+
indices.append((idx, data_source.get_frame_len(idx)))
|
166 |
+
indices.sort(key=lambda elem: elem[1])
|
167 |
+
|
168 |
+
batch = []
|
169 |
+
batch_frames = 0
|
170 |
+
for idx, frame_len in tqdm(
|
171 |
+
indices, desc=f"Creating dynamic batches with {frames_threshold} audio frames per gpu"
|
172 |
+
):
|
173 |
+
if batch_frames + frame_len <= self.frames_threshold and (max_samples == 0 or len(batch) < max_samples):
|
174 |
+
batch.append(idx)
|
175 |
+
batch_frames += frame_len
|
176 |
+
else:
|
177 |
+
if len(batch) > 0:
|
178 |
+
batches.append(batch)
|
179 |
+
if frame_len <= self.frames_threshold:
|
180 |
+
batch = [idx]
|
181 |
+
batch_frames = frame_len
|
182 |
+
else:
|
183 |
+
batch = []
|
184 |
+
batch_frames = 0
|
185 |
+
|
186 |
+
if not drop_last and len(batch) > 0:
|
187 |
+
batches.append(batch)
|
188 |
+
|
189 |
+
del indices
|
190 |
+
|
191 |
+
# if want to have different batches between epochs, may just set a seed and log it in ckpt
|
192 |
+
# cuz during multi-gpu training, although the batch on per gpu not change between epochs, the formed general minibatch is different
|
193 |
+
# e.g. for epoch n, use (random_seed + n)
|
194 |
+
random.seed(random_seed)
|
195 |
+
random.shuffle(batches)
|
196 |
+
|
197 |
+
self.batches = batches
|
198 |
+
|
199 |
+
def __iter__(self):
|
200 |
+
return iter(self.batches)
|
201 |
+
|
202 |
+
def __len__(self):
|
203 |
+
return len(self.batches)
|
204 |
+
|
205 |
+
|
206 |
+
# Load dataset
|
207 |
+
|
208 |
+
|
209 |
+
def load_dataset(
|
210 |
+
dataset_name: str,
|
211 |
+
tokenizer: str = "pinyin",
|
212 |
+
dataset_type: str = "CustomDataset",
|
213 |
+
audio_type: str = "raw",
|
214 |
+
mel_spec_module: nn.Module | None = None,
|
215 |
+
mel_spec_kwargs: dict = dict(),
|
216 |
+
) -> CustomDataset | HFDataset:
|
217 |
+
"""
|
218 |
+
dataset_type - "CustomDataset" if you want to use tokenizer name and default data path to load for train_dataset
|
219 |
+
- "CustomDatasetPath" if you just want to pass the full path to a preprocessed dataset without relying on tokenizer
|
220 |
+
"""
|
221 |
+
|
222 |
+
print("Loading dataset ...")
|
223 |
+
|
224 |
+
if dataset_type == "CustomDataset":
|
225 |
+
rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}_{tokenizer}"))
|
226 |
+
if audio_type == "raw":
|
227 |
+
try:
|
228 |
+
train_dataset = load_from_disk(f"{rel_data_path}/raw")
|
229 |
+
except: # noqa: E722
|
230 |
+
train_dataset = Dataset_.from_file(f"{rel_data_path}/raw.arrow")
|
231 |
+
preprocessed_mel = False
|
232 |
+
elif audio_type == "mel":
|
233 |
+
train_dataset = Dataset_.from_file(f"{rel_data_path}/mel.arrow")
|
234 |
+
preprocessed_mel = True
|
235 |
+
with open(f"{rel_data_path}/duration.json", "r", encoding="utf-8") as f:
|
236 |
+
data_dict = json.load(f)
|
237 |
+
durations = data_dict["duration"]
|
238 |
+
train_dataset = CustomDataset(
|
239 |
+
train_dataset,
|
240 |
+
durations=durations,
|
241 |
+
preprocessed_mel=preprocessed_mel,
|
242 |
+
mel_spec_module=mel_spec_module,
|
243 |
+
**mel_spec_kwargs,
|
244 |
+
)
|
245 |
+
|
246 |
+
elif dataset_type == "CustomDatasetPath":
|
247 |
+
try:
|
248 |
+
train_dataset = load_from_disk(f"{dataset_name}/raw")
|
249 |
+
except: # noqa: E722
|
250 |
+
train_dataset = Dataset_.from_file(f"{dataset_name}/raw.arrow")
|
251 |
+
|
252 |
+
with open(f"{dataset_name}/duration.json", "r", encoding="utf-8") as f:
|
253 |
+
data_dict = json.load(f)
|
254 |
+
durations = data_dict["duration"]
|
255 |
+
train_dataset = CustomDataset(
|
256 |
+
train_dataset, durations=durations, preprocessed_mel=preprocessed_mel, **mel_spec_kwargs
|
257 |
+
)
|
258 |
+
|
259 |
+
elif dataset_type == "HFDataset":
|
260 |
+
print(
|
261 |
+
"Should manually modify the path of huggingface dataset to your need.\n"
|
262 |
+
+ "May also the corresponding script cuz different dataset may have different format."
|
263 |
+
)
|
264 |
+
pre, post = dataset_name.split("_")
|
265 |
+
train_dataset = HFDataset(
|
266 |
+
load_dataset(f"{pre}/{pre}", split=f"train.{post}", cache_dir=str(files("f5_tts").joinpath("../../data"))),
|
267 |
+
)
|
268 |
+
|
269 |
+
return train_dataset
|
270 |
+
|
271 |
+
|
272 |
+
# collation
|
273 |
+
|
274 |
+
|
275 |
+
def collate_fn(batch):
|
276 |
+
mel_specs = [item["mel_spec"].squeeze(0) for item in batch]
|
277 |
+
mel_lengths = torch.LongTensor([spec.shape[-1] for spec in mel_specs])
|
278 |
+
max_mel_length = mel_lengths.amax()
|
279 |
+
|
280 |
+
padded_mel_specs = []
|
281 |
+
for spec in mel_specs: # TODO. maybe records mask for attention here
|
282 |
+
padding = (0, max_mel_length - spec.size(-1))
|
283 |
+
padded_spec = F.pad(spec, padding, value=0)
|
284 |
+
padded_mel_specs.append(padded_spec)
|
285 |
+
|
286 |
+
mel_specs = torch.stack(padded_mel_specs)
|
287 |
+
|
288 |
+
text = [item["text"] for item in batch]
|
289 |
+
text_lengths = torch.LongTensor([len(item) for item in text])
|
290 |
+
|
291 |
+
return dict(
|
292 |
+
mel=mel_specs,
|
293 |
+
mel_lengths=mel_lengths,
|
294 |
+
text=text,
|
295 |
+
text_lengths=text_lengths,
|
296 |
+
)
|
src/f5_tts/model/modules.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
ein notation:
|
3 |
+
b - batch
|
4 |
+
n - sequence
|
5 |
+
nt - text sequence
|
6 |
+
nw - raw wave length
|
7 |
+
d - dimension
|
8 |
+
"""
|
9 |
+
|
10 |
+
from __future__ import annotations
|
11 |
+
from typing import Optional
|
12 |
+
import math
|
13 |
+
|
14 |
+
import torch
|
15 |
+
from torch import nn
|
16 |
+
import torch.nn.functional as F
|
17 |
+
import torchaudio
|
18 |
+
|
19 |
+
from x_transformers.x_transformers import apply_rotary_pos_emb
|
20 |
+
|
21 |
+
|
22 |
+
# raw wav to mel spec
|
23 |
+
|
24 |
+
|
25 |
+
class MelSpec(nn.Module):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
filter_length=1024,
|
29 |
+
hop_length=256,
|
30 |
+
win_length=1024,
|
31 |
+
n_mel_channels=100,
|
32 |
+
target_sample_rate=24_000,
|
33 |
+
normalize=False,
|
34 |
+
power=1,
|
35 |
+
norm=None,
|
36 |
+
center=True,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.n_mel_channels = n_mel_channels
|
40 |
+
|
41 |
+
self.mel_stft = torchaudio.transforms.MelSpectrogram(
|
42 |
+
sample_rate=target_sample_rate,
|
43 |
+
n_fft=filter_length,
|
44 |
+
win_length=win_length,
|
45 |
+
hop_length=hop_length,
|
46 |
+
n_mels=n_mel_channels,
|
47 |
+
power=power,
|
48 |
+
center=center,
|
49 |
+
normalized=normalize,
|
50 |
+
norm=norm,
|
51 |
+
)
|
52 |
+
|
53 |
+
self.register_buffer("dummy", torch.tensor(0), persistent=False)
|
54 |
+
|
55 |
+
def forward(self, inp):
|
56 |
+
if len(inp.shape) == 3:
|
57 |
+
inp = inp.squeeze(1) # 'b 1 nw -> b nw'
|
58 |
+
|
59 |
+
assert len(inp.shape) == 2
|
60 |
+
|
61 |
+
if self.dummy.device != inp.device:
|
62 |
+
self.to(inp.device)
|
63 |
+
|
64 |
+
mel = self.mel_stft(inp)
|
65 |
+
mel = mel.clamp(min=1e-5).log()
|
66 |
+
return mel
|
67 |
+
|
68 |
+
|
69 |
+
# sinusoidal position embedding
|
70 |
+
|
71 |
+
|
72 |
+
class SinusPositionEmbedding(nn.Module):
|
73 |
+
def __init__(self, dim):
|
74 |
+
super().__init__()
|
75 |
+
self.dim = dim
|
76 |
+
|
77 |
+
def forward(self, x, scale=1000):
|
78 |
+
device = x.device
|
79 |
+
half_dim = self.dim // 2
|
80 |
+
emb = math.log(10000) / (half_dim - 1)
|
81 |
+
emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb)
|
82 |
+
emb = scale * x.unsqueeze(1) * emb.unsqueeze(0)
|
83 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
84 |
+
return emb
|
85 |
+
|
86 |
+
|
87 |
+
# convolutional position embedding
|
88 |
+
|
89 |
+
|
90 |
+
class ConvPositionEmbedding(nn.Module):
|
91 |
+
def __init__(self, dim, kernel_size=31, groups=16):
|
92 |
+
super().__init__()
|
93 |
+
assert kernel_size % 2 != 0
|
94 |
+
self.conv1d = nn.Sequential(
|
95 |
+
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
96 |
+
nn.Mish(),
|
97 |
+
nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2),
|
98 |
+
nn.Mish(),
|
99 |
+
)
|
100 |
+
|
101 |
+
def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722
|
102 |
+
if mask is not None:
|
103 |
+
mask = mask[..., None]
|
104 |
+
x = x.masked_fill(~mask, 0.0)
|
105 |
+
|
106 |
+
x = x.permute(0, 2, 1)
|
107 |
+
x = self.conv1d(x)
|
108 |
+
out = x.permute(0, 2, 1)
|
109 |
+
|
110 |
+
if mask is not None:
|
111 |
+
out = out.masked_fill(~mask, 0.0)
|
112 |
+
|
113 |
+
return out
|
114 |
+
|
115 |
+
|
116 |
+
# rotary positional embedding related
|
117 |
+
|
118 |
+
|
119 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0):
|
120 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
121 |
+
# has some connection to NTK literature
|
122 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
123 |
+
# https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py
|
124 |
+
theta *= theta_rescale_factor ** (dim / (dim - 2))
|
125 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
126 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
127 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
128 |
+
freqs_cos = torch.cos(freqs) # real part
|
129 |
+
freqs_sin = torch.sin(freqs) # imaginary part
|
130 |
+
return torch.cat([freqs_cos, freqs_sin], dim=-1)
|
131 |
+
|
132 |
+
|
133 |
+
def get_pos_embed_indices(start, length, max_pos, scale=1.0):
|
134 |
+
# length = length if isinstance(length, int) else length.max()
|
135 |
+
scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar
|
136 |
+
pos = (
|
137 |
+
start.unsqueeze(1)
|
138 |
+
+ (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long()
|
139 |
+
)
|
140 |
+
# avoid extra long error.
|
141 |
+
pos = torch.where(pos < max_pos, pos, max_pos - 1)
|
142 |
+
return pos
|
143 |
+
|
144 |
+
|
145 |
+
# Global Response Normalization layer (Instance Normalization ?)
|
146 |
+
|
147 |
+
|
148 |
+
class GRN(nn.Module):
|
149 |
+
def __init__(self, dim):
|
150 |
+
super().__init__()
|
151 |
+
self.gamma = nn.Parameter(torch.zeros(1, 1, dim))
|
152 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
153 |
+
|
154 |
+
def forward(self, x):
|
155 |
+
Gx = torch.norm(x, p=2, dim=1, keepdim=True)
|
156 |
+
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
|
157 |
+
return self.gamma * (x * Nx) + self.beta + x
|
158 |
+
|
159 |
+
|
160 |
+
# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py
|
161 |
+
# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108
|
162 |
+
|
163 |
+
|
164 |
+
class ConvNeXtV2Block(nn.Module):
|
165 |
+
def __init__(
|
166 |
+
self,
|
167 |
+
dim: int,
|
168 |
+
intermediate_dim: int,
|
169 |
+
dilation: int = 1,
|
170 |
+
):
|
171 |
+
super().__init__()
|
172 |
+
padding = (dilation * (7 - 1)) // 2
|
173 |
+
self.dwconv = nn.Conv1d(
|
174 |
+
dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation
|
175 |
+
) # depthwise conv
|
176 |
+
self.norm = nn.LayerNorm(dim, eps=1e-6)
|
177 |
+
self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers
|
178 |
+
self.act = nn.GELU()
|
179 |
+
self.grn = GRN(intermediate_dim)
|
180 |
+
self.pwconv2 = nn.Linear(intermediate_dim, dim)
|
181 |
+
|
182 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
183 |
+
residual = x
|
184 |
+
x = x.transpose(1, 2) # b n d -> b d n
|
185 |
+
x = self.dwconv(x)
|
186 |
+
x = x.transpose(1, 2) # b d n -> b n d
|
187 |
+
x = self.norm(x)
|
188 |
+
x = self.pwconv1(x)
|
189 |
+
x = self.act(x)
|
190 |
+
x = self.grn(x)
|
191 |
+
x = self.pwconv2(x)
|
192 |
+
return residual + x
|
193 |
+
|
194 |
+
|
195 |
+
# AdaLayerNormZero
|
196 |
+
# return with modulated x for attn input, and params for later mlp modulation
|
197 |
+
|
198 |
+
|
199 |
+
class AdaLayerNormZero(nn.Module):
|
200 |
+
def __init__(self, dim):
|
201 |
+
super().__init__()
|
202 |
+
|
203 |
+
self.silu = nn.SiLU()
|
204 |
+
self.linear = nn.Linear(dim, dim * 6)
|
205 |
+
|
206 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
207 |
+
|
208 |
+
def forward(self, x, emb=None):
|
209 |
+
emb = self.linear(self.silu(emb))
|
210 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1)
|
211 |
+
|
212 |
+
x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None]
|
213 |
+
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
214 |
+
|
215 |
+
|
216 |
+
# AdaLayerNormZero for final layer
|
217 |
+
# return only with modulated x for attn input, cuz no more mlp modulation
|
218 |
+
|
219 |
+
|
220 |
+
class AdaLayerNormZero_Final(nn.Module):
|
221 |
+
def __init__(self, dim):
|
222 |
+
super().__init__()
|
223 |
+
|
224 |
+
self.silu = nn.SiLU()
|
225 |
+
self.linear = nn.Linear(dim, dim * 2)
|
226 |
+
|
227 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
228 |
+
|
229 |
+
def forward(self, x, emb):
|
230 |
+
emb = self.linear(self.silu(emb))
|
231 |
+
scale, shift = torch.chunk(emb, 2, dim=1)
|
232 |
+
|
233 |
+
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
234 |
+
return x
|
235 |
+
|
236 |
+
|
237 |
+
# FeedForward
|
238 |
+
|
239 |
+
|
240 |
+
class FeedForward(nn.Module):
|
241 |
+
def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"):
|
242 |
+
super().__init__()
|
243 |
+
inner_dim = int(dim * mult)
|
244 |
+
dim_out = dim_out if dim_out is not None else dim
|
245 |
+
|
246 |
+
activation = nn.GELU(approximate=approximate)
|
247 |
+
project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation)
|
248 |
+
self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
249 |
+
|
250 |
+
def forward(self, x):
|
251 |
+
return self.ff(x)
|
252 |
+
|
253 |
+
|
254 |
+
# Attention with possible joint part
|
255 |
+
# modified from diffusers/src/diffusers/models/attention_processor.py
|
256 |
+
|
257 |
+
|
258 |
+
class Attention(nn.Module):
|
259 |
+
def __init__(
|
260 |
+
self,
|
261 |
+
processor: JointAttnProcessor | AttnProcessor,
|
262 |
+
dim: int,
|
263 |
+
heads: int = 8,
|
264 |
+
dim_head: int = 64,
|
265 |
+
dropout: float = 0.0,
|
266 |
+
context_dim: Optional[int] = None, # if not None -> joint attention
|
267 |
+
context_pre_only=None,
|
268 |
+
):
|
269 |
+
super().__init__()
|
270 |
+
|
271 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
272 |
+
raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
273 |
+
|
274 |
+
self.processor = processor
|
275 |
+
|
276 |
+
self.dim = dim
|
277 |
+
self.heads = heads
|
278 |
+
self.inner_dim = dim_head * heads
|
279 |
+
self.dropout = dropout
|
280 |
+
|
281 |
+
self.context_dim = context_dim
|
282 |
+
self.context_pre_only = context_pre_only
|
283 |
+
|
284 |
+
self.to_q = nn.Linear(dim, self.inner_dim)
|
285 |
+
self.to_k = nn.Linear(dim, self.inner_dim)
|
286 |
+
self.to_v = nn.Linear(dim, self.inner_dim)
|
287 |
+
|
288 |
+
if self.context_dim is not None:
|
289 |
+
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
290 |
+
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
291 |
+
if self.context_pre_only is not None:
|
292 |
+
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
293 |
+
|
294 |
+
self.to_out = nn.ModuleList([])
|
295 |
+
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
296 |
+
self.to_out.append(nn.Dropout(dropout))
|
297 |
+
|
298 |
+
if self.context_pre_only is not None and not self.context_pre_only:
|
299 |
+
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
300 |
+
|
301 |
+
def forward(
|
302 |
+
self,
|
303 |
+
x: float["b n d"], # noised input x # noqa: F722
|
304 |
+
c: float["b n d"] = None, # context c # noqa: F722
|
305 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
306 |
+
rope=None, # rotary position embedding for x
|
307 |
+
c_rope=None, # rotary position embedding for c
|
308 |
+
) -> torch.Tensor:
|
309 |
+
if c is not None:
|
310 |
+
return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope)
|
311 |
+
else:
|
312 |
+
return self.processor(self, x, mask=mask, rope=rope)
|
313 |
+
|
314 |
+
|
315 |
+
# Attention processor
|
316 |
+
|
317 |
+
|
318 |
+
class AttnProcessor:
|
319 |
+
def __init__(self):
|
320 |
+
pass
|
321 |
+
|
322 |
+
def __call__(
|
323 |
+
self,
|
324 |
+
attn: Attention,
|
325 |
+
x: float["b n d"], # noised input x # noqa: F722
|
326 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
327 |
+
rope=None, # rotary position embedding
|
328 |
+
) -> torch.FloatTensor:
|
329 |
+
batch_size = x.shape[0]
|
330 |
+
|
331 |
+
# `sample` projections.
|
332 |
+
query = attn.to_q(x)
|
333 |
+
key = attn.to_k(x)
|
334 |
+
value = attn.to_v(x)
|
335 |
+
|
336 |
+
# apply rotary position embedding
|
337 |
+
if rope is not None:
|
338 |
+
freqs, xpos_scale = rope
|
339 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
340 |
+
|
341 |
+
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
342 |
+
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
343 |
+
|
344 |
+
# attention
|
345 |
+
inner_dim = key.shape[-1]
|
346 |
+
head_dim = inner_dim // attn.heads
|
347 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
348 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
349 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
350 |
+
|
351 |
+
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
352 |
+
if mask is not None:
|
353 |
+
attn_mask = mask
|
354 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
355 |
+
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
356 |
+
else:
|
357 |
+
attn_mask = None
|
358 |
+
|
359 |
+
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
360 |
+
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
361 |
+
x = x.to(query.dtype)
|
362 |
+
|
363 |
+
# linear proj
|
364 |
+
x = attn.to_out[0](x)
|
365 |
+
# dropout
|
366 |
+
x = attn.to_out[1](x)
|
367 |
+
|
368 |
+
if mask is not None:
|
369 |
+
mask = mask.unsqueeze(-1)
|
370 |
+
x = x.masked_fill(~mask, 0.0)
|
371 |
+
|
372 |
+
return x
|
373 |
+
|
374 |
+
|
375 |
+
# Joint Attention processor for MM-DiT
|
376 |
+
# modified from diffusers/src/diffusers/models/attention_processor.py
|
377 |
+
|
378 |
+
|
379 |
+
class JointAttnProcessor:
|
380 |
+
def __init__(self):
|
381 |
+
pass
|
382 |
+
|
383 |
+
def __call__(
|
384 |
+
self,
|
385 |
+
attn: Attention,
|
386 |
+
x: float["b n d"], # noised input x # noqa: F722
|
387 |
+
c: float["b nt d"] = None, # context c, here text # noqa: F722
|
388 |
+
mask: bool["b n"] | None = None, # noqa: F722
|
389 |
+
rope=None, # rotary position embedding for x
|
390 |
+
c_rope=None, # rotary position embedding for c
|
391 |
+
) -> torch.FloatTensor:
|
392 |
+
residual = x
|
393 |
+
|
394 |
+
batch_size = c.shape[0]
|
395 |
+
|
396 |
+
# `sample` projections.
|
397 |
+
query = attn.to_q(x)
|
398 |
+
key = attn.to_k(x)
|
399 |
+
value = attn.to_v(x)
|
400 |
+
|
401 |
+
# `context` projections.
|
402 |
+
c_query = attn.to_q_c(c)
|
403 |
+
c_key = attn.to_k_c(c)
|
404 |
+
c_value = attn.to_v_c(c)
|
405 |
+
|
406 |
+
# apply rope for context and noised input independently
|
407 |
+
if rope is not None:
|
408 |
+
freqs, xpos_scale = rope
|
409 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
410 |
+
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
411 |
+
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
412 |
+
if c_rope is not None:
|
413 |
+
freqs, xpos_scale = c_rope
|
414 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
415 |
+
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
416 |
+
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
417 |
+
|
418 |
+
# attention
|
419 |
+
query = torch.cat([query, c_query], dim=1)
|
420 |
+
key = torch.cat([key, c_key], dim=1)
|
421 |
+
value = torch.cat([value, c_value], dim=1)
|
422 |
+
|
423 |
+
inner_dim = key.shape[-1]
|
424 |
+
head_dim = inner_dim // attn.heads
|
425 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
426 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
427 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
428 |
+
|
429 |
+
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
430 |
+
if mask is not None:
|
431 |
+
attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text)
|
432 |
+
attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n'
|
433 |
+
attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2])
|
434 |
+
else:
|
435 |
+
attn_mask = None
|
436 |
+
|
437 |
+
x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False)
|
438 |
+
x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
439 |
+
x = x.to(query.dtype)
|
440 |
+
|
441 |
+
# Split the attention outputs.
|
442 |
+
x, c = (
|
443 |
+
x[:, : residual.shape[1]],
|
444 |
+
x[:, residual.shape[1] :],
|
445 |
+
)
|
446 |
+
|
447 |
+
# linear proj
|
448 |
+
x = attn.to_out[0](x)
|
449 |
+
# dropout
|
450 |
+
x = attn.to_out[1](x)
|
451 |
+
if not attn.context_pre_only:
|
452 |
+
c = attn.to_out_c(c)
|
453 |
+
|
454 |
+
if mask is not None:
|
455 |
+
mask = mask.unsqueeze(-1)
|
456 |
+
x = x.masked_fill(~mask, 0.0)
|
457 |
+
# c = c.masked_fill(~mask, 0.) # no mask for c (text)
|
458 |
+
|
459 |
+
return x, c
|
460 |
+
|
461 |
+
|
462 |
+
# DiT Block
|
463 |
+
|
464 |
+
|
465 |
+
class DiTBlock(nn.Module):
|
466 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
467 |
+
super().__init__()
|
468 |
+
|
469 |
+
self.attn_norm = AdaLayerNormZero(dim)
|
470 |
+
self.attn = Attention(
|
471 |
+
processor=AttnProcessor(),
|
472 |
+
dim=dim,
|
473 |
+
heads=heads,
|
474 |
+
dim_head=dim_head,
|
475 |
+
dropout=dropout,
|
476 |
+
)
|
477 |
+
|
478 |
+
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
479 |
+
self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
480 |
+
|
481 |
+
def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding
|
482 |
+
# pre-norm & modulation for attention input
|
483 |
+
norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t)
|
484 |
+
|
485 |
+
# attention
|
486 |
+
attn_output = self.attn(x=norm, mask=mask, rope=rope)
|
487 |
+
|
488 |
+
# process attention output for input x
|
489 |
+
x = x + gate_msa.unsqueeze(1) * attn_output
|
490 |
+
|
491 |
+
norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
492 |
+
ff_output = self.ff(norm)
|
493 |
+
x = x + gate_mlp.unsqueeze(1) * ff_output
|
494 |
+
|
495 |
+
return x
|
496 |
+
|
497 |
+
|
498 |
+
# MMDiT Block https://arxiv.org/abs/2403.03206
|
499 |
+
|
500 |
+
|
501 |
+
class MMDiTBlock(nn.Module):
|
502 |
+
r"""
|
503 |
+
modified from diffusers/src/diffusers/models/attention.py
|
504 |
+
|
505 |
+
notes.
|
506 |
+
_c: context related. text, cond, etc. (left part in sd3 fig2.b)
|
507 |
+
_x: noised input related. (right part)
|
508 |
+
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
509 |
+
"""
|
510 |
+
|
511 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
512 |
+
super().__init__()
|
513 |
+
|
514 |
+
self.context_pre_only = context_pre_only
|
515 |
+
|
516 |
+
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
517 |
+
self.attn_norm_x = AdaLayerNormZero(dim)
|
518 |
+
self.attn = Attention(
|
519 |
+
processor=JointAttnProcessor(),
|
520 |
+
dim=dim,
|
521 |
+
heads=heads,
|
522 |
+
dim_head=dim_head,
|
523 |
+
dropout=dropout,
|
524 |
+
context_dim=dim,
|
525 |
+
context_pre_only=context_pre_only,
|
526 |
+
)
|
527 |
+
|
528 |
+
if not context_pre_only:
|
529 |
+
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
530 |
+
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
531 |
+
else:
|
532 |
+
self.ff_norm_c = None
|
533 |
+
self.ff_c = None
|
534 |
+
self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
535 |
+
self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
536 |
+
|
537 |
+
def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding
|
538 |
+
# pre-norm & modulation for attention input
|
539 |
+
if self.context_pre_only:
|
540 |
+
norm_c = self.attn_norm_c(c, t)
|
541 |
+
else:
|
542 |
+
norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t)
|
543 |
+
norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t)
|
544 |
+
|
545 |
+
# attention
|
546 |
+
x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope)
|
547 |
+
|
548 |
+
# process attention output for context c
|
549 |
+
if self.context_pre_only:
|
550 |
+
c = None
|
551 |
+
else: # if not last layer
|
552 |
+
c = c + c_gate_msa.unsqueeze(1) * c_attn_output
|
553 |
+
|
554 |
+
norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
555 |
+
c_ff_output = self.ff_c(norm_c)
|
556 |
+
c = c + c_gate_mlp.unsqueeze(1) * c_ff_output
|
557 |
+
|
558 |
+
# process attention output for input x
|
559 |
+
x = x + x_gate_msa.unsqueeze(1) * x_attn_output
|
560 |
+
|
561 |
+
norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None]
|
562 |
+
x_ff_output = self.ff_x(norm_x)
|
563 |
+
x = x + x_gate_mlp.unsqueeze(1) * x_ff_output
|
564 |
+
|
565 |
+
return c, x
|
566 |
+
|
567 |
+
|
568 |
+
# time step conditioning embedding
|
569 |
+
|
570 |
+
|
571 |
+
class TimestepEmbedding(nn.Module):
|
572 |
+
def __init__(self, dim, freq_embed_dim=256):
|
573 |
+
super().__init__()
|
574 |
+
self.time_embed = SinusPositionEmbedding(freq_embed_dim)
|
575 |
+
self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
|
576 |
+
|
577 |
+
def forward(self, timestep: float["b"]): # noqa: F821
|
578 |
+
time_hidden = self.time_embed(timestep)
|
579 |
+
time_hidden = time_hidden.to(timestep.dtype)
|
580 |
+
time = self.time_mlp(time_hidden) # b d
|
581 |
+
return time
|