|
import os |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
import subprocess |
|
|
|
from PIL import Image |
|
from gfpgan.utils import GFPGANer |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from realesrgan.utils import RealESRGANer |
|
|
|
|
|
def runcmd(cmd, verbose = False, *args, **kwargs): |
|
|
|
process = subprocess.Popen( |
|
cmd, |
|
stdout = subprocess.PIPE, |
|
stderr = subprocess.PIPE, |
|
text = True, |
|
shell = True |
|
) |
|
std_out, std_err = process.communicate() |
|
if verbose: |
|
print(std_out.strip(), std_err) |
|
pass |
|
|
|
if not os.path.exists('GFPGANv1.4.pth'): |
|
runcmd("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") |
|
if not os.path.exists('realesr-general-x4v3.pth'): |
|
runcmd("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
model_path = 'realesr-general-x4v3.pth' |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) |
|
|
|
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2) |
|
|
|
def enhance_image( |
|
pil_image: Image, |
|
enhance_face: bool = False, |
|
scale: int = 2, |
|
): |
|
face_enhancer.upscale = scale |
|
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR) |
|
|
|
h, w = img.shape[0:2] |
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
if enhance_face: |
|
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=True, paste_back=True) |
|
else: |
|
output, _ = upsampler.enhance(img, outscale=2) |
|
pil_output = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) |
|
|
|
return pil_output |