zhiweili
commited on
Commit
·
deca47d
1
Parent(s):
0577725
modify steps
Browse files- app_base.py +8 -7
- enhance_utils.py +3 -1
- inversion_run_base.py +0 -1
app_base.py
CHANGED
@@ -31,13 +31,16 @@ def create_demo() -> gr.Blocks:
|
|
31 |
start_step: int,
|
32 |
guidance_scale: float,
|
33 |
generate_size: int,
|
34 |
-
|
35 |
-
enhance_face: bool = True,
|
36 |
):
|
37 |
w2 = 1.0
|
38 |
run_task_time = 0
|
39 |
time_cost_str = ''
|
40 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
|
|
|
|
|
|
41 |
run_model = base_run
|
42 |
res_image = run_model(
|
43 |
input_image,
|
@@ -50,7 +53,6 @@ def create_demo() -> gr.Blocks:
|
|
50 |
num_steps,
|
51 |
start_step,
|
52 |
guidance_scale,
|
53 |
-
adapter_weights,
|
54 |
)
|
55 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
56 |
enhanced_image = enhance_image(res_image, enhance_face)
|
@@ -81,11 +83,10 @@ def create_demo() -> gr.Blocks:
|
|
81 |
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
|
82 |
with gr.Accordion("Advanced Options", open=False):
|
83 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
|
84 |
-
generate_size = gr.Number(label="Generate Size", value=
|
85 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
86 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
87 |
-
|
88 |
-
adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=False)
|
89 |
with gr.Column():
|
90 |
seed = gr.Number(label="Seed", value=8)
|
91 |
w1 = gr.Number(label="W1", value=2)
|
@@ -109,7 +110,7 @@ def create_demo() -> gr.Blocks:
|
|
109 |
outputs=[origin_area_image, croper],
|
110 |
).success(
|
111 |
fn=image_to_image,
|
112 |
-
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size,
|
113 |
outputs=[enhanced_image, generated_image, generated_cost],
|
114 |
).success(
|
115 |
fn=restore_result,
|
|
|
31 |
start_step: int,
|
32 |
guidance_scale: float,
|
33 |
generate_size: int,
|
34 |
+
pre_enhance: bool = True,
|
|
|
35 |
):
|
36 |
w2 = 1.0
|
37 |
run_task_time = 0
|
38 |
time_cost_str = ''
|
39 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
40 |
+
if pre_enhance:
|
41 |
+
input_image = enhance_image(input_image, enhance_face=True)
|
42 |
+
input_image = input_image.resize((generate_size, generate_size))
|
43 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
44 |
run_model = base_run
|
45 |
res_image = run_model(
|
46 |
input_image,
|
|
|
53 |
num_steps,
|
54 |
start_step,
|
55 |
guidance_scale,
|
|
|
56 |
)
|
57 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
58 |
enhanced_image = enhance_image(res_image, enhance_face)
|
|
|
83 |
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
|
84 |
with gr.Accordion("Advanced Options", open=False):
|
85 |
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
|
86 |
+
generate_size = gr.Number(label="Generate Size", value=512)
|
87 |
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
88 |
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
89 |
+
pre_enhance = gr.Checkbox(label="Pre Enhance", value=True)
|
|
|
90 |
with gr.Column():
|
91 |
seed = gr.Number(label="Seed", value=8)
|
92 |
w1 = gr.Number(label="W1", value=2)
|
|
|
110 |
outputs=[origin_area_image, croper],
|
111 |
).success(
|
112 |
fn=image_to_image,
|
113 |
+
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, pre_enhance],
|
114 |
outputs=[enhanced_image, generated_image, generated_cost],
|
115 |
).success(
|
116 |
fn=restore_result,
|
enhance_utils.py
CHANGED
@@ -21,12 +21,14 @@ model_path = 'realesr-general-x4v3.pth'
|
|
21 |
half = True if torch.cuda.is_available() else False
|
22 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
23 |
|
24 |
-
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=
|
25 |
|
26 |
def enhance_image(
|
27 |
pil_image: Image,
|
28 |
enhance_face: bool = True,
|
|
|
29 |
):
|
|
|
30 |
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
31 |
|
32 |
h, w = img.shape[0:2]
|
|
|
21 |
half = True if torch.cuda.is_available() else False
|
22 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
23 |
|
24 |
+
face_enhancer = GFPGANer(model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2)
|
25 |
|
26 |
def enhance_image(
|
27 |
pil_image: Image,
|
28 |
enhance_face: bool = True,
|
29 |
+
scale: int = 2,
|
30 |
):
|
31 |
+
face_enhancer.upscale = scale
|
32 |
img = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
33 |
|
34 |
h, w = img.shape[0:2]
|
inversion_run_base.py
CHANGED
@@ -79,7 +79,6 @@ def run(
|
|
79 |
num_steps:int,
|
80 |
start_step:int,
|
81 |
guidance_scale:float,
|
82 |
-
adapter_weights:float,
|
83 |
):
|
84 |
generator = torch.Generator().manual_seed(seed)
|
85 |
|
|
|
79 |
num_steps:int,
|
80 |
start_step:int,
|
81 |
guidance_scale:float,
|
|
|
82 |
):
|
83 |
generator = torch.Generator().manual_seed(seed)
|
84 |
|