image_hd / app_upscale.py
zhiweili
generate_size visible
4279b74
import requests
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionUpscalePipeline
import torch
import gradio as gr
import time
import spaces
from segment_utils import(
segment_image,
restore_result,
)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f'{device} is available')
model_id = "stabilityai/stable-diffusion-x4-upscaler"
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
upscale_pipe = upscale_pipe.to(device)
DEFAULT_SRC_PROMPT = "a person with pefect face"
DEFAULT_CATEGORY = "face"
def create_demo() -> gr.Blocks:
@spaces.GPU(duration=30)
def upscale_image(
input_image: Image,
prompt: str,
num_inference_steps: int = 10,
):
time_cost_str = ''
run_task_time = 0
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
upscaled_image = upscale_pipe(
prompt=prompt,
image=input_image,
num_inference_steps=num_inference_steps,
).images[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return upscaled_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
with gr.Column():
num_inference_steps = gr.Number(label="Num Inference Steps", value=5)
generate_size = gr.Number(label="Generate Size", value=512)
g_btn = gr.Button("Upscale Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False, visible=False)
upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=upscale_image,
inputs=[origin_area_image, input_image_prompt, num_inference_steps],
outputs=[upscaled_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, upscaled_image],
outputs=[restored_image, download_path],
)
return demo