|
import requests |
|
from PIL import Image |
|
from io import BytesIO |
|
from diffusers import StableDiffusionUpscalePipeline |
|
import torch |
|
import gradio as gr |
|
import time |
|
import spaces |
|
|
|
from segment_utils import( |
|
segment_image, |
|
restore_result, |
|
) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
print(f'{device} is available') |
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler" |
|
upscale_pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) |
|
upscale_pipe = upscale_pipe.to(device) |
|
|
|
DEFAULT_SRC_PROMPT = "a person with pefect face" |
|
DEFAULT_CATEGORY = "face" |
|
|
|
|
|
def create_demo() -> gr.Blocks: |
|
|
|
@spaces.GPU(duration=30) |
|
def upscale_image( |
|
input_image: Image, |
|
prompt: str, |
|
num_inference_steps: int = 10, |
|
): |
|
time_cost_str = '' |
|
run_task_time = 0 |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
upscaled_image = upscale_pipe( |
|
prompt=prompt, |
|
image=input_image, |
|
num_inference_steps=num_inference_steps, |
|
).images[0] |
|
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str) |
|
|
|
return upscaled_image, time_cost_str |
|
|
|
def get_time_cost(run_task_time, time_cost_str): |
|
now_time = int(time.time()*1000) |
|
if run_task_time == 0: |
|
time_cost_str = 'start' |
|
else: |
|
if time_cost_str != '': |
|
time_cost_str += f'-->' |
|
time_cost_str += f'{now_time - run_task_time}' |
|
run_task_time = now_time |
|
return run_task_time, time_cost_str |
|
|
|
with gr.Blocks() as demo: |
|
croper = gr.State() |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT) |
|
with gr.Column(): |
|
num_inference_steps = gr.Number(label="Num Inference Steps", value=5) |
|
generate_size = gr.Number(label="Generate Size", value=512) |
|
g_btn = gr.Button("Upscale Image") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
with gr.Column(): |
|
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False) |
|
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False, visible=False) |
|
upscaled_image = gr.Image(label="Upscaled Image", format="png", type="pil", interactive=False) |
|
download_path = gr.File(label="Download the output image", interactive=False) |
|
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False) |
|
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False) |
|
mask_expansion = gr.Number(label="Mask Expansion", value=20, visible=False) |
|
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation", visible=False) |
|
|
|
g_btn.click( |
|
fn=segment_image, |
|
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation], |
|
outputs=[origin_area_image, croper], |
|
).success( |
|
fn=upscale_image, |
|
inputs=[origin_area_image, input_image_prompt, num_inference_steps], |
|
outputs=[upscaled_image, generated_cost], |
|
).success( |
|
fn=restore_result, |
|
inputs=[croper, category, upscaled_image], |
|
outputs=[restored_image, download_path], |
|
) |
|
|
|
return demo |
|
|