Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
·
91bb531
1
Parent(s):
304cdbb
test refiner
Browse files- app.py +1 -1
- app_haircolor_refiner.py +124 -0
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from app_haircolor_refiner import create_demo as create_demo_haircolor
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
app_haircolor_refiner.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from segment_utils import(
|
9 |
+
segment_image,
|
10 |
+
restore_result,
|
11 |
+
)
|
12 |
+
from diffusers import (
|
13 |
+
DiffusionPipeline,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
BASE_MODEL = "stabilityai/stable-diffusion-xl-refiner-1.0"
|
18 |
+
|
19 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
DEFAULT_EDIT_PROMPT = "blue hair"
|
22 |
+
|
23 |
+
DEFAULT_CATEGORY = "hair"
|
24 |
+
|
25 |
+
basepipeline = DiffusionPipeline.from_pretrained(
|
26 |
+
BASE_MODEL,
|
27 |
+
torch_dtype=torch.float16,
|
28 |
+
use_safetensors=True,
|
29 |
+
variant="fp16",
|
30 |
+
)
|
31 |
+
|
32 |
+
basepipeline = basepipeline.to(DEVICE)
|
33 |
+
|
34 |
+
@spaces.GPU(duration=30)
|
35 |
+
def image_to_image(
|
36 |
+
input_image: Image,
|
37 |
+
edit_prompt: str,
|
38 |
+
seed: int,
|
39 |
+
num_steps: int,
|
40 |
+
guidance_scale: float,
|
41 |
+
generate_size: int,
|
42 |
+
):
|
43 |
+
run_task_time = 0
|
44 |
+
time_cost_str = ''
|
45 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
46 |
+
|
47 |
+
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
48 |
+
generated_image = basepipeline(
|
49 |
+
generator=generator,
|
50 |
+
prompt=edit_prompt,
|
51 |
+
image=input_image,
|
52 |
+
# denoising_start=denoising_start,
|
53 |
+
guidance_scale=guidance_scale,
|
54 |
+
num_inference_steps=num_steps,
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
58 |
+
|
59 |
+
return generated_image, time_cost_str
|
60 |
+
|
61 |
+
def make_inpaint_condition(image, image_mask):
|
62 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
63 |
+
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
64 |
+
|
65 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
66 |
+
image[image_mask > 0.5] = -1.0 # set as masked pixel
|
67 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
68 |
+
image = torch.from_numpy(image)
|
69 |
+
return image
|
70 |
+
|
71 |
+
def get_time_cost(run_task_time, time_cost_str):
|
72 |
+
now_time = int(time.time()*1000)
|
73 |
+
if run_task_time == 0:
|
74 |
+
time_cost_str = 'start'
|
75 |
+
else:
|
76 |
+
if time_cost_str != '':
|
77 |
+
time_cost_str += f'-->'
|
78 |
+
time_cost_str += f'{now_time - run_task_time}'
|
79 |
+
run_task_time = now_time
|
80 |
+
return run_task_time, time_cost_str
|
81 |
+
|
82 |
+
def create_demo() -> gr.Blocks:
|
83 |
+
with gr.Blocks() as demo:
|
84 |
+
croper = gr.State()
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
88 |
+
generate_size = gr.Number(label="Generate Size", value=512)
|
89 |
+
with gr.Column():
|
90 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
|
91 |
+
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
92 |
+
with gr.Column():
|
93 |
+
with gr.Accordion("Advanced Options", open=False):
|
94 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
95 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
96 |
+
seed = gr.Number(label="Seed", value=8)
|
97 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
98 |
+
g_btn = gr.Button("Edit Image")
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column():
|
102 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
103 |
+
with gr.Column():
|
104 |
+
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
|
105 |
+
with gr.Column():
|
106 |
+
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
|
107 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
108 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
109 |
+
|
110 |
+
g_btn.click(
|
111 |
+
fn=segment_image,
|
112 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
113 |
+
outputs=[origin_area_image, croper],
|
114 |
+
).success(
|
115 |
+
fn=image_to_image,
|
116 |
+
inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale, generate_size],
|
117 |
+
outputs=[generated_image, generated_cost],
|
118 |
+
).success(
|
119 |
+
fn=restore_result,
|
120 |
+
inputs=[croper, category, generated_image],
|
121 |
+
outputs=[restored_image],
|
122 |
+
)
|
123 |
+
|
124 |
+
return demo
|