Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
·
336094b
1
Parent(s):
5e90935
test app_ddim
Browse files- app.py +1 -1
- app_ddim.py +260 -0
- requirements.txt +2 -1
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
from
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
from app_ddim import create_demo as create_demo_haircolor
|
4 |
|
5 |
with gr.Blocks(css="style.css") as demo:
|
6 |
with gr.Tabs():
|
app_ddim.py
ADDED
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from tqdm.auto import tqdm
|
8 |
+
from torchvision import transforms as tfms
|
9 |
+
from PIL import Image
|
10 |
+
from segment_utils import(
|
11 |
+
segment_image,
|
12 |
+
restore_result,
|
13 |
+
)
|
14 |
+
from diffusers import (
|
15 |
+
StableDiffusionPipeline,
|
16 |
+
DDIMScheduler,
|
17 |
+
)
|
18 |
+
|
19 |
+
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
20 |
+
|
21 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
+
|
23 |
+
DEFAULT_INPUT_PROMPT = "a woman"
|
24 |
+
DEFAULT_EDIT_PROMPT = "a woman with linen-blonde-hair"
|
25 |
+
|
26 |
+
DEFAULT_CATEGORY = "hair"
|
27 |
+
|
28 |
+
basepipeline = StableDiffusionPipeline.from_pretrained(
|
29 |
+
BASE_MODEL,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
use_safetensors=True,
|
32 |
+
)
|
33 |
+
|
34 |
+
basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
|
35 |
+
|
36 |
+
basepipeline = basepipeline.to(DEVICE)
|
37 |
+
|
38 |
+
basepipeline.enable_model_cpu_offload()
|
39 |
+
|
40 |
+
@spaces.GPU(duration=30)
|
41 |
+
def image_to_image(
|
42 |
+
input_image: Image,
|
43 |
+
input_image_prompt: str,
|
44 |
+
edit_prompt: str,
|
45 |
+
num_steps: int,
|
46 |
+
start_step: int,
|
47 |
+
guidance_scale: float,
|
48 |
+
):
|
49 |
+
run_task_time = 0
|
50 |
+
time_cost_str = ''
|
51 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
latent = basepipeline.vae.encode(tfms.functional.to_tensor(input_image).unsqueeze(0).to(DEVICE) * 2 - 1)
|
55 |
+
l = 0.18215 * latent.latent_dist.sample()
|
56 |
+
inverted_latents = invert(l, input_image_prompt, num_inference_steps=num_steps)
|
57 |
+
generated_image = sample(
|
58 |
+
edit_prompt,
|
59 |
+
start_latents=inverted_latents[-(start_step + 1)][None],
|
60 |
+
start_step=start_step,
|
61 |
+
num_inference_steps=num_steps,
|
62 |
+
guidance_scale=guidance_scale,
|
63 |
+
)[0]
|
64 |
+
|
65 |
+
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
66 |
+
|
67 |
+
return generated_image, time_cost_str
|
68 |
+
|
69 |
+
def make_inpaint_condition(image, image_mask):
|
70 |
+
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
71 |
+
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
72 |
+
|
73 |
+
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
74 |
+
image[image_mask > 0.5] = -1.0 # set as masked pixel
|
75 |
+
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
76 |
+
image = torch.from_numpy(image)
|
77 |
+
return image
|
78 |
+
|
79 |
+
## Inversion
|
80 |
+
@torch.no_grad()
|
81 |
+
def invert(
|
82 |
+
start_latents,
|
83 |
+
prompt,
|
84 |
+
guidance_scale=3.5,
|
85 |
+
num_inference_steps=80,
|
86 |
+
num_images_per_prompt=1,
|
87 |
+
do_classifier_free_guidance=True,
|
88 |
+
negative_prompt="",
|
89 |
+
device=DEVICE,
|
90 |
+
):
|
91 |
+
|
92 |
+
# Encode prompt
|
93 |
+
text_embeddings = basepipeline._encode_prompt(
|
94 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
95 |
+
)
|
96 |
+
|
97 |
+
# Latents are now the specified start latents
|
98 |
+
latents = start_latents.clone()
|
99 |
+
|
100 |
+
# We'll keep a list of the inverted latents as the process goes on
|
101 |
+
intermediate_latents = []
|
102 |
+
|
103 |
+
# Set num inference steps
|
104 |
+
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
105 |
+
|
106 |
+
# Reversed timesteps <<<<<<<<<<<<<<<<<<<<
|
107 |
+
timesteps = reversed(basepipeline.scheduler.timesteps)
|
108 |
+
|
109 |
+
for i in tqdm(range(1, num_inference_steps), total=num_inference_steps - 1):
|
110 |
+
|
111 |
+
# We'll skip the final iteration
|
112 |
+
if i >= num_inference_steps - 1:
|
113 |
+
continue
|
114 |
+
|
115 |
+
t = timesteps[i]
|
116 |
+
|
117 |
+
# Expand the latents if we are doing classifier free guidance
|
118 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
119 |
+
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
|
120 |
+
|
121 |
+
# Predict the noise residual
|
122 |
+
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
123 |
+
|
124 |
+
# Perform guidance
|
125 |
+
if do_classifier_free_guidance:
|
126 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
127 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
128 |
+
|
129 |
+
current_t = max(0, t.item() - (1000 // num_inference_steps)) # t
|
130 |
+
next_t = t # min(999, t.item() + (1000//num_inference_steps)) # t+1
|
131 |
+
alpha_t = basepipeline.scheduler.alphas_cumprod[current_t]
|
132 |
+
alpha_t_next = basepipeline.scheduler.alphas_cumprod[next_t]
|
133 |
+
|
134 |
+
# Inverted update step (re-arranging the update step to get x(t) (new latents) as a function of x(t-1) (current latents)
|
135 |
+
latents = (latents - (1 - alpha_t).sqrt() * noise_pred) * (alpha_t_next.sqrt() / alpha_t.sqrt()) + (
|
136 |
+
1 - alpha_t_next
|
137 |
+
).sqrt() * noise_pred
|
138 |
+
|
139 |
+
# Store
|
140 |
+
intermediate_latents.append(latents)
|
141 |
+
|
142 |
+
return torch.cat(intermediate_latents)
|
143 |
+
|
144 |
+
# Sample function (regular DDIM)
|
145 |
+
@torch.no_grad()
|
146 |
+
def sample(
|
147 |
+
prompt,
|
148 |
+
start_step=0,
|
149 |
+
start_latents=None,
|
150 |
+
guidance_scale=3.5,
|
151 |
+
num_inference_steps=30,
|
152 |
+
num_images_per_prompt=1,
|
153 |
+
do_classifier_free_guidance=True,
|
154 |
+
negative_prompt="",
|
155 |
+
device=DEVICE,
|
156 |
+
):
|
157 |
+
|
158 |
+
# Encode prompt
|
159 |
+
text_embeddings = basepipeline._encode_prompt(
|
160 |
+
prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt
|
161 |
+
)
|
162 |
+
|
163 |
+
# Set num inference steps
|
164 |
+
basepipeline.scheduler.set_timesteps(num_inference_steps, device=device)
|
165 |
+
|
166 |
+
# Create a random starting point if we don't have one already
|
167 |
+
if start_latents is None:
|
168 |
+
start_latents = torch.randn(1, 4, 64, 64, device=device)
|
169 |
+
start_latents *= basepipeline.scheduler.init_noise_sigma
|
170 |
+
|
171 |
+
latents = start_latents.clone()
|
172 |
+
|
173 |
+
for i in tqdm(range(start_step, num_inference_steps)):
|
174 |
+
|
175 |
+
t = basepipeline.scheduler.timesteps[i]
|
176 |
+
|
177 |
+
# Expand the latents if we are doing classifier free guidance
|
178 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
179 |
+
latent_model_input = basepipeline.scheduler.scale_model_input(latent_model_input, t)
|
180 |
+
|
181 |
+
# Predict the noise residual
|
182 |
+
noise_pred = basepipeline.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
183 |
+
|
184 |
+
# Perform guidance
|
185 |
+
if do_classifier_free_guidance:
|
186 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
187 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
188 |
+
|
189 |
+
# Normally we'd rely on the scheduler to handle the update step:
|
190 |
+
# latents = pipe.scheduler.step(noise_pred, t, latents).prev_sample
|
191 |
+
|
192 |
+
# Instead, let's do it ourselves:
|
193 |
+
prev_t = max(1, t.item() - (1000 // num_inference_steps)) # t-1
|
194 |
+
alpha_t = basepipeline.scheduler.alphas_cumprod[t.item()]
|
195 |
+
alpha_t_prev = basepipeline.scheduler.alphas_cumprod[prev_t]
|
196 |
+
predicted_x0 = (latents - (1 - alpha_t).sqrt() * noise_pred) / alpha_t.sqrt()
|
197 |
+
direction_pointing_to_xt = (1 - alpha_t_prev).sqrt() * noise_pred
|
198 |
+
latents = alpha_t_prev.sqrt() * predicted_x0 + direction_pointing_to_xt
|
199 |
+
|
200 |
+
# Post-processing
|
201 |
+
images = basepipeline.decode_latents(latents)
|
202 |
+
images = basepipeline.numpy_to_pil(images)
|
203 |
+
|
204 |
+
return images
|
205 |
+
|
206 |
+
def get_time_cost(run_task_time, time_cost_str):
|
207 |
+
now_time = int(time.time()*1000)
|
208 |
+
if run_task_time == 0:
|
209 |
+
time_cost_str = 'start'
|
210 |
+
else:
|
211 |
+
if time_cost_str != '':
|
212 |
+
time_cost_str += f'-->'
|
213 |
+
time_cost_str += f'{now_time - run_task_time}'
|
214 |
+
run_task_time = now_time
|
215 |
+
return run_task_time, time_cost_str
|
216 |
+
|
217 |
+
def create_demo() -> gr.Blocks:
|
218 |
+
with gr.Blocks() as demo:
|
219 |
+
croper = gr.State()
|
220 |
+
with gr.Row():
|
221 |
+
with gr.Column():
|
222 |
+
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_INPUT_PROMPT)
|
223 |
+
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
|
224 |
+
with gr.Column():
|
225 |
+
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
|
226 |
+
start_step = gr.Slider(minimum=0, maximum=100, value=15, step=1, label="Start Step")
|
227 |
+
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
|
228 |
+
with gr.Column():
|
229 |
+
generate_size = gr.Number(label="Generate Size", value=512)
|
230 |
+
with gr.Accordion("Advanced Options", open=False):
|
231 |
+
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
|
232 |
+
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
|
233 |
+
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
|
234 |
+
g_btn = gr.Button("Edit Image")
|
235 |
+
|
236 |
+
with gr.Row():
|
237 |
+
with gr.Column():
|
238 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
239 |
+
with gr.Column():
|
240 |
+
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
|
241 |
+
with gr.Column():
|
242 |
+
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
|
243 |
+
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
|
244 |
+
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
|
245 |
+
|
246 |
+
g_btn.click(
|
247 |
+
fn=segment_image,
|
248 |
+
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
|
249 |
+
outputs=[origin_area_image, croper],
|
250 |
+
).success(
|
251 |
+
fn=image_to_image,
|
252 |
+
inputs=[origin_area_image, input_image_prompt, edit_prompt, num_steps, start_step, guidance_scale],
|
253 |
+
outputs=[generated_image, generated_cost],
|
254 |
+
).success(
|
255 |
+
fn=restore_result,
|
256 |
+
inputs=[croper, category, generated_image],
|
257 |
+
outputs=[restored_image],
|
258 |
+
)
|
259 |
+
|
260 |
+
return demo
|
requirements.txt
CHANGED
@@ -8,4 +8,5 @@ mediapipe
|
|
8 |
spaces
|
9 |
sentencepiece
|
10 |
controlnet_aux
|
11 |
-
peft
|
|
|
|
8 |
spaces
|
9 |
sentencepiece
|
10 |
controlnet_aux
|
11 |
+
peft
|
12 |
+
tqdm
|