File size: 7,170 Bytes
80b4f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f57cfb
c4a2b6e
80b4f1b
 
fec2939
 
760912a
 
 
fec2939
 
f0686f5
7dc06b4
 
80b4f1b
 
 
 
 
 
 
 
fec2939
760912a
 
 
 
 
 
 
 
fec2939
 
 
760912a
fec2939
 
125fda8
760912a
125fda8
 
fec2939
80b4f1b
1036005
80b4f1b
 
7bd62db
80b4f1b
 
2f57cfb
c4a2b6e
80b4f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
760912a
 
80b4f1b
 
 
 
6345fdb
049f1dd
760912a
049f1dd
6345fdb
80b4f1b
 
 
 
 
 
 
 
 
f3f3219
 
80b4f1b
 
6345fdb
80b4f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6345fdb
80b4f1b
 
fec2939
760912a
 
fec2939
 
 
 
80b4f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760912a
80b4f1b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import spaces
import gradio as gr
import time
import torch
import numpy as np

from PIL import Image
from segment_utils import(
    segment_image_withmask,
    restore_result,
)
from diffusers import (
    StableDiffusionControlNetInpaintPipeline,
    ControlNetModel,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerAncestralDiscreteScheduler,
)

from controlnet_aux import (
    CannyDetector,
    LineartDetector,
    PidiNetDetector,
    HEDdetector,
)

# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
BASE_MODEL = "SG161222/Realistic_Vision_V2.0"

DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_EDIT_PROMPT = "a woman, blue hair, high detailed"
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"

DEFAULT_CATEGORY = "hair"

canny_detector = CannyDetector()
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_detector = lineart_detector.to(DEVICE)

pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
pidiNet_detector = pidiNet_detector.to(DEVICE)

hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
hed_detector = hed_detector.to(DEVICE)

controlnet = [
    ControlNetModel.from_pretrained(
        "lllyasviel/control_v11p_sd15_lineart", 
        torch_dtype=torch.float16,
    ),
    ControlNetModel.from_pretrained(
        "lllyasviel/control_v11p_sd15_softedge",
        torch_dtype=torch.float16,
    ),
]

basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    # use_safetensors=True,
    controlnet=controlnet,
)
# basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)

basepipeline = basepipeline.to(DEVICE)

basepipeline.enable_model_cpu_offload()

@spaces.GPU(duration=30)
def image_to_image(
    input_image: Image,
    mask_image: Image,
    edit_prompt: str,
    seed: int,
    num_steps: int,
    guidance_scale: float,
    generate_size: int,
    cond_scale1: float = 1.2,
    cond_scale2: float = 1.2,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    # canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
    lineart_image = lineart_detector(input_image, 384, generate_size)
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    pidiNet_image = pidiNet_detector(input_image, 512, generate_size)
    control_image = [lineart_image, pidiNet_image]

    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    generated_image = basepipeline(
        generator=generator,
        prompt=edit_prompt,
        negative_prompt=DEFAULT_NEGATIVE_PROMPT,
        image=input_image,
        mask_image=mask_image,
        control_image=control_image,
        height=generate_size,
        width=generate_size,
        guidance_scale=guidance_scale,
        num_inference_steps=num_steps,
        controlnet_conditioning_scale=[cond_scale1, cond_scale2],
    ).images[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    return generated_image, time_cost_str

def make_inpaint_condition(image, image_mask):
    image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
    image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0

    assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
    image[image_mask > 0.5] = -1.0  # set as masked pixel
    image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return image

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                generate_size = gr.Number(label="Generate Size", value=512)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Num Steps")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
            with gr.Column():
                with gr.Accordion("Advanced Options", open=False):
                    cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Lineart Scale")
                    cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="PidiNet Scale")
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                    seed = gr.Number(label="Seed", value=8)
                    category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
                mask_image = gr.Image(label="Mask Image", type="pil", interactive=False)
        
        g_btn.click(
            fn=segment_image_withmask,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, mask_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, mask_image, edit_prompt,seed, num_steps, guidance_scale, generate_size, cond_scale1, cond_scale2],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image],
        )

    return demo