File size: 4,337 Bytes
8ae56d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386a133
8ae56d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386a133
8ae56d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import spaces
import gradio as gr
import time
import torch

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from diffusers import (
    StableDiffusionXLImg2ImgPipeline
)

BASE_MODEL = "stabilityai/stable-diffusion-xl-base-1.0"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

DEFAULT_EDIT_PROMPT = "a beautiful woman with a hollywood style face"
DEFAULT_NEGATIVE_PROMPT = "nude, nudity, nsfw, nipple, Bare-chested, palm hand, hands, fingers, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, cloned face, disfigured"

DEFAULT_CATEGORY = "face"

basepipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    BASE_MODEL,
    torch_dtype=torch.float16,
    variant="fp16",
    use_safetensors=True,
)

basepipeline = basepipeline.to(DEVICE)


@spaces.GPU(duration=15)
def image_to_image(
    input_image: Image,
    edit_prompt: str,
    seed: int,
    num_steps: int,
    guidance_scale: float,
):
    run_task_time = 0
    time_cost_str = ''
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
    generator = torch.Generator(device=DEVICE).manual_seed(seed)
    generated_image = basepipeline(
        generator=generator,
        prompt=edit_prompt,
        negative_prompt=DEFAULT_NEGATIVE_PROMPT,
        image=input_image,
        guidance_scale=guidance_scale,
        num_inference_steps = num_steps,
    ).images[0]
    
    run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

    return generated_image, time_cost_str

def get_time_cost(run_task_time, time_cost_str):
    now_time = int(time.time()*1000)
    if run_task_time == 0:
        time_cost_str = 'start'
    else:
        if time_cost_str != '': 
            time_cost_str += f'-->'
        time_cost_str += f'{now_time - run_task_time}'
    run_task_time = now_time
    return run_task_time, time_cost_str

def create_demo() -> gr.Blocks:
    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                generate_size = gr.Number(label="Generate Size", value=1024)
                category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=30, step=1, label="Num Steps")
                guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
                mask_expansion = gr.Number(label="Mask Expansion", value=300, visible=False)
            with gr.Column():
                mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
                seed = gr.Number(label="Seed", value=8)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
                generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, edit_prompt,seed, num_steps, guidance_scale],
            outputs=[generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, generated_image],
            outputs=[restored_image],
        )

    return demo