Spaces:
Sleeping
Sleeping
jerin
commited on
Commit
β’
e93e440
1
Parent(s):
f226f2c
LSTM code
Browse files- file_info.ipynb +615 -87
file_info.ipynb
CHANGED
@@ -2,19 +2,26 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd \n",
|
10 |
"from datetime import datetime \n",
|
|
|
11 |
"import matplotlib.pyplot as plt\n",
|
12 |
-
"import seaborn as sns\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
]
|
14 |
},
|
15 |
{
|
16 |
"cell_type": "code",
|
17 |
-
"execution_count":
|
18 |
"metadata": {},
|
19 |
"outputs": [
|
20 |
{
|
@@ -39,17 +46,18 @@
|
|
39 |
" <tr style=\"text-align: right;\">\n",
|
40 |
" <th></th>\n",
|
41 |
" <th>date</th>\n",
|
42 |
-
" <th>
|
43 |
" <th>rtu_004_sat_sp_tn</th>\n",
|
44 |
-
" <th>
|
45 |
-
" <th>
|
46 |
" <th>rtu_004_fltrd_sa_flow_tn</th>\n",
|
47 |
" <th>rtu_004_sa_temp</th>\n",
|
48 |
" <th>rtu_004_pa_static_stpt_tn</th>\n",
|
49 |
" <th>rtu_004_oa_flow_tn</th>\n",
|
50 |
" <th>rtu_004_oadmpr_pct</th>\n",
|
51 |
" <th>...</th>\n",
|
52 |
-
" <th>
|
|
|
53 |
" <th>hvac_S</th>\n",
|
54 |
" <th>hp_hws_temp</th>\n",
|
55 |
" <th>aru_001_cwr_temp</th>\n",
|
@@ -58,7 +66,6 @@
|
|
58 |
" <th>aru_001_hwr_temp</th>\n",
|
59 |
" <th>aru_001_hws_fr_gpm</th>\n",
|
60 |
" <th>aru_001_hws_temp</th>\n",
|
61 |
-
" <th>hp_hws_temp</th>\n",
|
62 |
" </tr>\n",
|
63 |
" </thead>\n",
|
64 |
" <tbody>\n",
|
@@ -67,7 +74,7 @@
|
|
67 |
" <td>2018-01-01 00:00:00</td>\n",
|
68 |
" <td>100.0</td>\n",
|
69 |
" <td>69.0</td>\n",
|
70 |
-
" <td>
|
71 |
" <td>20.0</td>\n",
|
72 |
" <td>9265.604</td>\n",
|
73 |
" <td>66.1</td>\n",
|
@@ -77,6 +84,7 @@
|
|
77 |
" <td>...</td>\n",
|
78 |
" <td>NaN</td>\n",
|
79 |
" <td>NaN</td>\n",
|
|
|
80 |
" <td>75.3</td>\n",
|
81 |
" <td>NaN</td>\n",
|
82 |
" <td>NaN</td>\n",
|
@@ -84,14 +92,13 @@
|
|
84 |
" <td>NaN</td>\n",
|
85 |
" <td>NaN</td>\n",
|
86 |
" <td>NaN</td>\n",
|
87 |
-
" <td>75.3</td>\n",
|
88 |
" </tr>\n",
|
89 |
" <tr>\n",
|
90 |
" <th>1</th>\n",
|
91 |
" <td>2018-01-01 00:01:00</td>\n",
|
92 |
" <td>100.0</td>\n",
|
93 |
" <td>69.0</td>\n",
|
94 |
-
" <td>
|
95 |
" <td>20.0</td>\n",
|
96 |
" <td>9265.604</td>\n",
|
97 |
" <td>66.0</td>\n",
|
@@ -101,6 +108,7 @@
|
|
101 |
" <td>...</td>\n",
|
102 |
" <td>NaN</td>\n",
|
103 |
" <td>NaN</td>\n",
|
|
|
104 |
" <td>75.3</td>\n",
|
105 |
" <td>NaN</td>\n",
|
106 |
" <td>NaN</td>\n",
|
@@ -108,14 +116,13 @@
|
|
108 |
" <td>NaN</td>\n",
|
109 |
" <td>NaN</td>\n",
|
110 |
" <td>NaN</td>\n",
|
111 |
-
" <td>75.3</td>\n",
|
112 |
" </tr>\n",
|
113 |
" <tr>\n",
|
114 |
" <th>2</th>\n",
|
115 |
" <td>2018-01-01 00:02:00</td>\n",
|
116 |
" <td>100.0</td>\n",
|
117 |
" <td>69.0</td>\n",
|
118 |
-
" <td>
|
119 |
" <td>20.0</td>\n",
|
120 |
" <td>9708.240</td>\n",
|
121 |
" <td>66.1</td>\n",
|
@@ -125,6 +132,7 @@
|
|
125 |
" <td>...</td>\n",
|
126 |
" <td>NaN</td>\n",
|
127 |
" <td>NaN</td>\n",
|
|
|
128 |
" <td>75.3</td>\n",
|
129 |
" <td>NaN</td>\n",
|
130 |
" <td>NaN</td>\n",
|
@@ -132,14 +140,13 @@
|
|
132 |
" <td>NaN</td>\n",
|
133 |
" <td>NaN</td>\n",
|
134 |
" <td>NaN</td>\n",
|
135 |
-
" <td>75.3</td>\n",
|
136 |
" </tr>\n",
|
137 |
" <tr>\n",
|
138 |
" <th>3</th>\n",
|
139 |
" <td>2018-01-01 00:03:00</td>\n",
|
140 |
" <td>100.0</td>\n",
|
141 |
" <td>69.0</td>\n",
|
142 |
-
" <td>
|
143 |
" <td>20.0</td>\n",
|
144 |
" <td>9611.638</td>\n",
|
145 |
" <td>66.1</td>\n",
|
@@ -149,6 +156,7 @@
|
|
149 |
" <td>...</td>\n",
|
150 |
" <td>NaN</td>\n",
|
151 |
" <td>NaN</td>\n",
|
|
|
152 |
" <td>75.3</td>\n",
|
153 |
" <td>NaN</td>\n",
|
154 |
" <td>NaN</td>\n",
|
@@ -156,14 +164,13 @@
|
|
156 |
" <td>NaN</td>\n",
|
157 |
" <td>NaN</td>\n",
|
158 |
" <td>NaN</td>\n",
|
159 |
-
" <td>75.3</td>\n",
|
160 |
" </tr>\n",
|
161 |
" <tr>\n",
|
162 |
" <th>4</th>\n",
|
163 |
" <td>2018-01-01 00:04:00</td>\n",
|
164 |
" <td>100.0</td>\n",
|
165 |
" <td>69.0</td>\n",
|
166 |
-
" <td>
|
167 |
" <td>20.0</td>\n",
|
168 |
" <td>9215.110</td>\n",
|
169 |
" <td>66.0</td>\n",
|
@@ -173,6 +180,7 @@
|
|
173 |
" <td>...</td>\n",
|
174 |
" <td>NaN</td>\n",
|
175 |
" <td>NaN</td>\n",
|
|
|
176 |
" <td>75.3</td>\n",
|
177 |
" <td>NaN</td>\n",
|
178 |
" <td>NaN</td>\n",
|
@@ -180,7 +188,6 @@
|
|
180 |
" <td>NaN</td>\n",
|
181 |
" <td>NaN</td>\n",
|
182 |
" <td>NaN</td>\n",
|
183 |
-
" <td>75.3</td>\n",
|
184 |
" </tr>\n",
|
185 |
" <tr>\n",
|
186 |
" <th>...</th>\n",
|
@@ -211,8 +218,8 @@
|
|
211 |
" <td>2020-12-31 23:58:00</td>\n",
|
212 |
" <td>100.0</td>\n",
|
213 |
" <td>68.0</td>\n",
|
214 |
-
" <td>63.
|
215 |
-
" <td>
|
216 |
" <td>18884.834</td>\n",
|
217 |
" <td>64.4</td>\n",
|
218 |
" <td>0.06</td>\n",
|
@@ -220,6 +227,7 @@
|
|
220 |
" <td>23.4</td>\n",
|
221 |
" <td>...</td>\n",
|
222 |
" <td>71.0</td>\n",
|
|
|
223 |
" <td>23.145000</td>\n",
|
224 |
" <td>123.8</td>\n",
|
225 |
" <td>56.25</td>\n",
|
@@ -228,15 +236,14 @@
|
|
228 |
" <td>123.42</td>\n",
|
229 |
" <td>61.6</td>\n",
|
230 |
" <td>122.36</td>\n",
|
231 |
-
" <td>123.8</td>\n",
|
232 |
" </tr>\n",
|
233 |
" <tr>\n",
|
234 |
" <th>2072150</th>\n",
|
235 |
" <td>2020-12-31 23:58:00</td>\n",
|
236 |
" <td>100.0</td>\n",
|
237 |
" <td>68.0</td>\n",
|
238 |
-
" <td>63.
|
239 |
-
" <td>
|
240 |
" <td>18884.834</td>\n",
|
241 |
" <td>64.4</td>\n",
|
242 |
" <td>0.06</td>\n",
|
@@ -244,6 +251,7 @@
|
|
244 |
" <td>23.4</td>\n",
|
245 |
" <td>...</td>\n",
|
246 |
" <td>71.0</td>\n",
|
|
|
247 |
" <td>23.145000</td>\n",
|
248 |
" <td>123.8</td>\n",
|
249 |
" <td>56.25</td>\n",
|
@@ -252,15 +260,14 @@
|
|
252 |
" <td>123.42</td>\n",
|
253 |
" <td>61.6</td>\n",
|
254 |
" <td>122.36</td>\n",
|
255 |
-
" <td>123.8</td>\n",
|
256 |
" </tr>\n",
|
257 |
" <tr>\n",
|
258 |
" <th>2072151</th>\n",
|
259 |
" <td>2020-12-31 23:59:00</td>\n",
|
260 |
" <td>100.0</td>\n",
|
261 |
" <td>68.0</td>\n",
|
262 |
-
" <td>63.
|
263 |
-
" <td>
|
264 |
" <td>19345.508</td>\n",
|
265 |
" <td>64.3</td>\n",
|
266 |
" <td>0.06</td>\n",
|
@@ -268,6 +275,7 @@
|
|
268 |
" <td>23.4</td>\n",
|
269 |
" <td>...</td>\n",
|
270 |
" <td>71.0</td>\n",
|
|
|
271 |
" <td>23.145000</td>\n",
|
272 |
" <td>123.8</td>\n",
|
273 |
" <td>56.25</td>\n",
|
@@ -276,15 +284,14 @@
|
|
276 |
" <td>123.42</td>\n",
|
277 |
" <td>61.6</td>\n",
|
278 |
" <td>122.36</td>\n",
|
279 |
-
" <td>123.8</td>\n",
|
280 |
" </tr>\n",
|
281 |
" <tr>\n",
|
282 |
" <th>2072152</th>\n",
|
283 |
" <td>2020-12-31 23:59:00</td>\n",
|
284 |
" <td>100.0</td>\n",
|
285 |
" <td>68.0</td>\n",
|
286 |
-
" <td>63.
|
287 |
-
" <td>
|
288 |
" <td>19345.508</td>\n",
|
289 |
" <td>64.3</td>\n",
|
290 |
" <td>0.06</td>\n",
|
@@ -292,6 +299,7 @@
|
|
292 |
" <td>23.4</td>\n",
|
293 |
" <td>...</td>\n",
|
294 |
" <td>71.0</td>\n",
|
|
|
295 |
" <td>23.145000</td>\n",
|
296 |
" <td>123.8</td>\n",
|
297 |
" <td>56.25</td>\n",
|
@@ -300,15 +308,14 @@
|
|
300 |
" <td>123.42</td>\n",
|
301 |
" <td>61.6</td>\n",
|
302 |
" <td>122.36</td>\n",
|
303 |
-
" <td>123.8</td>\n",
|
304 |
" </tr>\n",
|
305 |
" <tr>\n",
|
306 |
" <th>2072153</th>\n",
|
307 |
" <td>2021-01-01 00:00:00</td>\n",
|
308 |
" <td>100.0</td>\n",
|
309 |
" <td>68.0</td>\n",
|
310 |
-
" <td>63.
|
311 |
-
" <td>
|
312 |
" <td>18650.232</td>\n",
|
313 |
" <td>64.1</td>\n",
|
314 |
" <td>0.06</td>\n",
|
@@ -316,6 +323,7 @@
|
|
316 |
" <td>22.9</td>\n",
|
317 |
" <td>...</td>\n",
|
318 |
" <td>71.0</td>\n",
|
|
|
319 |
" <td>23.788947</td>\n",
|
320 |
" <td>123.8</td>\n",
|
321 |
" <td>56.25</td>\n",
|
@@ -324,15 +332,14 @@
|
|
324 |
" <td>123.42</td>\n",
|
325 |
" <td>61.6</td>\n",
|
326 |
" <td>122.36</td>\n",
|
327 |
-
" <td>123.8</td>\n",
|
328 |
" </tr>\n",
|
329 |
" </tbody>\n",
|
330 |
"</table>\n",
|
331 |
-
"<p>2072154 rows Γ
|
332 |
"</div>"
|
333 |
],
|
334 |
"text/plain": [
|
335 |
-
" date
|
336 |
"0 2018-01-01 00:00:00 100.0 69.0 \n",
|
337 |
"1 2018-01-01 00:01:00 100.0 69.0 \n",
|
338 |
"2 2018-01-01 00:02:00 100.0 69.0 \n",
|
@@ -345,18 +352,18 @@
|
|
345 |
"2072152 2020-12-31 23:59:00 100.0 68.0 \n",
|
346 |
"2072153 2021-01-01 00:00:00 100.0 68.0 \n",
|
347 |
"\n",
|
348 |
-
"
|
349 |
-
"0
|
350 |
-
"1
|
351 |
-
"2
|
352 |
-
"3
|
353 |
-
"4
|
354 |
"... ... ... ... \n",
|
355 |
-
"2072149 63.
|
356 |
-
"2072150 63.
|
357 |
-
"2072151 63.
|
358 |
-
"2072152 63.
|
359 |
-
"2072153 63.
|
360 |
"\n",
|
361 |
" rtu_004_sa_temp rtu_004_pa_static_stpt_tn rtu_004_oa_flow_tn \\\n",
|
362 |
"0 66.1 0.06 0.000000 \n",
|
@@ -371,57 +378,70 @@
|
|
371 |
"2072152 64.3 0.06 3154.390000 \n",
|
372 |
"2072153 64.1 0.06 3076.270000 \n",
|
373 |
"\n",
|
374 |
-
" rtu_004_oadmpr_pct ...
|
375 |
-
"0 28.0 ... NaN
|
376 |
-
"1 28.0 ... NaN
|
377 |
-
"2 28.0 ... NaN
|
378 |
-
"3 28.0 ... NaN
|
379 |
-
"4 28.0 ... NaN
|
380 |
-
"... ... ... ...
|
381 |
-
"2072149 23.4 ... 71.0
|
382 |
-
"2072150 23.4 ... 71.0
|
383 |
-
"2072151 23.4 ... 71.0
|
384 |
-
"2072152 23.4 ... 71.0
|
385 |
-
"2072153 22.9 ... 71.0
|
386 |
"\n",
|
387 |
-
"
|
388 |
-
"0
|
389 |
-
"1
|
390 |
-
"2
|
391 |
-
"3
|
392 |
-
"4
|
393 |
-
"...
|
394 |
-
"2072149 56.25 54.71
|
395 |
-
"2072150 56.25 54.71
|
396 |
-
"2072151 56.25 54.71
|
397 |
-
"2072152 56.25 54.71
|
398 |
-
"2072153 56.25 54.71
|
399 |
"\n",
|
400 |
-
" aru_001_hwr_temp aru_001_hws_fr_gpm
|
401 |
-
"0 NaN NaN
|
402 |
-
"1 NaN NaN
|
403 |
-
"2 NaN NaN
|
404 |
-
"3 NaN NaN
|
405 |
-
"4 NaN NaN
|
406 |
-
"... ...
|
407 |
-
"2072149 123.42 61.6
|
408 |
-
"2072150 123.42 61.6
|
409 |
-
"2072151 123.42 61.6
|
410 |
-
"2072152 123.42 61.6
|
411 |
-
"2072153 123.42 61.6
|
412 |
"\n",
|
413 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
]
|
415 |
},
|
416 |
-
"execution_count":
|
417 |
"metadata": {},
|
418 |
"output_type": "execute_result"
|
419 |
}
|
420 |
],
|
421 |
"source": [
|
422 |
-
"merged = pd.read_csv(r'data
|
423 |
"\n",
|
424 |
-
"zone = \"
|
425 |
"\n",
|
426 |
"if zone in [\"36\", \"37\", \"38\", \"39\", \"40\", \"41\", \"42\", \"64\", \"65\", \"66\", \"67\", \"68\", \"69\", \"70\"]:\n",
|
427 |
" rtu = \"rtu_001\"\n",
|
@@ -436,10 +456,518 @@
|
|
436 |
" rtu = \"rtu_002\"\n",
|
437 |
" wing = \"hvac_N\"\n",
|
438 |
"#merged is the dataframe\n",
|
439 |
-
"sorted = merged[[\"date\"]+[col for col in merged.columns if zone in col or rtu in col or wing in col]+[\"hp_hws_temp\", \"aru_001_cwr_temp\" , \"aru_001_cws_fr_gpm\" ,\"aru_001_cws_temp\",\"aru_001_hwr_temp\" ,\"aru_001_hws_fr_gpm\" ,\"aru_001_hws_temp\"
|
440 |
"sorted"
|
441 |
]
|
442 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
{
|
444 |
"cell_type": "code",
|
445 |
"execution_count": null,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
"import pandas as pd \n",
|
10 |
"from datetime import datetime \n",
|
11 |
+
"from datetime import date\n",
|
12 |
"import matplotlib.pyplot as plt\n",
|
13 |
+
"import seaborn as sns\n",
|
14 |
+
"import numpy as np\n",
|
15 |
+
"import pandas as pd\n",
|
16 |
+
"from keras.models import Sequential\n",
|
17 |
+
"from keras.layers import LSTM, Dense\n",
|
18 |
+
"from sklearn.model_selection import train_test_split\n",
|
19 |
+
"from sklearn.preprocessing import MinMaxScaler\n"
|
20 |
]
|
21 |
},
|
22 |
{
|
23 |
"cell_type": "code",
|
24 |
+
"execution_count": 3,
|
25 |
"metadata": {},
|
26 |
"outputs": [
|
27 |
{
|
|
|
46 |
" <tr style=\"text-align: right;\">\n",
|
47 |
" <th></th>\n",
|
48 |
" <th>date</th>\n",
|
49 |
+
" <th>zone_047_hw_valve</th>\n",
|
50 |
" <th>rtu_004_sat_sp_tn</th>\n",
|
51 |
+
" <th>zone_047_temp</th>\n",
|
52 |
+
" <th>zone_047_fan_spd</th>\n",
|
53 |
" <th>rtu_004_fltrd_sa_flow_tn</th>\n",
|
54 |
" <th>rtu_004_sa_temp</th>\n",
|
55 |
" <th>rtu_004_pa_static_stpt_tn</th>\n",
|
56 |
" <th>rtu_004_oa_flow_tn</th>\n",
|
57 |
" <th>rtu_004_oadmpr_pct</th>\n",
|
58 |
" <th>...</th>\n",
|
59 |
+
" <th>zone_047_heating_sp</th>\n",
|
60 |
+
" <th>Unnamed: 47_y</th>\n",
|
61 |
" <th>hvac_S</th>\n",
|
62 |
" <th>hp_hws_temp</th>\n",
|
63 |
" <th>aru_001_cwr_temp</th>\n",
|
|
|
66 |
" <th>aru_001_hwr_temp</th>\n",
|
67 |
" <th>aru_001_hws_fr_gpm</th>\n",
|
68 |
" <th>aru_001_hws_temp</th>\n",
|
|
|
69 |
" </tr>\n",
|
70 |
" </thead>\n",
|
71 |
" <tbody>\n",
|
|
|
74 |
" <td>2018-01-01 00:00:00</td>\n",
|
75 |
" <td>100.0</td>\n",
|
76 |
" <td>69.0</td>\n",
|
77 |
+
" <td>67.5</td>\n",
|
78 |
" <td>20.0</td>\n",
|
79 |
" <td>9265.604</td>\n",
|
80 |
" <td>66.1</td>\n",
|
|
|
84 |
" <td>...</td>\n",
|
85 |
" <td>NaN</td>\n",
|
86 |
" <td>NaN</td>\n",
|
87 |
+
" <td>NaN</td>\n",
|
88 |
" <td>75.3</td>\n",
|
89 |
" <td>NaN</td>\n",
|
90 |
" <td>NaN</td>\n",
|
|
|
92 |
" <td>NaN</td>\n",
|
93 |
" <td>NaN</td>\n",
|
94 |
" <td>NaN</td>\n",
|
|
|
95 |
" </tr>\n",
|
96 |
" <tr>\n",
|
97 |
" <th>1</th>\n",
|
98 |
" <td>2018-01-01 00:01:00</td>\n",
|
99 |
" <td>100.0</td>\n",
|
100 |
" <td>69.0</td>\n",
|
101 |
+
" <td>67.5</td>\n",
|
102 |
" <td>20.0</td>\n",
|
103 |
" <td>9265.604</td>\n",
|
104 |
" <td>66.0</td>\n",
|
|
|
108 |
" <td>...</td>\n",
|
109 |
" <td>NaN</td>\n",
|
110 |
" <td>NaN</td>\n",
|
111 |
+
" <td>NaN</td>\n",
|
112 |
" <td>75.3</td>\n",
|
113 |
" <td>NaN</td>\n",
|
114 |
" <td>NaN</td>\n",
|
|
|
116 |
" <td>NaN</td>\n",
|
117 |
" <td>NaN</td>\n",
|
118 |
" <td>NaN</td>\n",
|
|
|
119 |
" </tr>\n",
|
120 |
" <tr>\n",
|
121 |
" <th>2</th>\n",
|
122 |
" <td>2018-01-01 00:02:00</td>\n",
|
123 |
" <td>100.0</td>\n",
|
124 |
" <td>69.0</td>\n",
|
125 |
+
" <td>67.5</td>\n",
|
126 |
" <td>20.0</td>\n",
|
127 |
" <td>9708.240</td>\n",
|
128 |
" <td>66.1</td>\n",
|
|
|
132 |
" <td>...</td>\n",
|
133 |
" <td>NaN</td>\n",
|
134 |
" <td>NaN</td>\n",
|
135 |
+
" <td>NaN</td>\n",
|
136 |
" <td>75.3</td>\n",
|
137 |
" <td>NaN</td>\n",
|
138 |
" <td>NaN</td>\n",
|
|
|
140 |
" <td>NaN</td>\n",
|
141 |
" <td>NaN</td>\n",
|
142 |
" <td>NaN</td>\n",
|
|
|
143 |
" </tr>\n",
|
144 |
" <tr>\n",
|
145 |
" <th>3</th>\n",
|
146 |
" <td>2018-01-01 00:03:00</td>\n",
|
147 |
" <td>100.0</td>\n",
|
148 |
" <td>69.0</td>\n",
|
149 |
+
" <td>67.5</td>\n",
|
150 |
" <td>20.0</td>\n",
|
151 |
" <td>9611.638</td>\n",
|
152 |
" <td>66.1</td>\n",
|
|
|
156 |
" <td>...</td>\n",
|
157 |
" <td>NaN</td>\n",
|
158 |
" <td>NaN</td>\n",
|
159 |
+
" <td>NaN</td>\n",
|
160 |
" <td>75.3</td>\n",
|
161 |
" <td>NaN</td>\n",
|
162 |
" <td>NaN</td>\n",
|
|
|
164 |
" <td>NaN</td>\n",
|
165 |
" <td>NaN</td>\n",
|
166 |
" <td>NaN</td>\n",
|
|
|
167 |
" </tr>\n",
|
168 |
" <tr>\n",
|
169 |
" <th>4</th>\n",
|
170 |
" <td>2018-01-01 00:04:00</td>\n",
|
171 |
" <td>100.0</td>\n",
|
172 |
" <td>69.0</td>\n",
|
173 |
+
" <td>67.5</td>\n",
|
174 |
" <td>20.0</td>\n",
|
175 |
" <td>9215.110</td>\n",
|
176 |
" <td>66.0</td>\n",
|
|
|
180 |
" <td>...</td>\n",
|
181 |
" <td>NaN</td>\n",
|
182 |
" <td>NaN</td>\n",
|
183 |
+
" <td>NaN</td>\n",
|
184 |
" <td>75.3</td>\n",
|
185 |
" <td>NaN</td>\n",
|
186 |
" <td>NaN</td>\n",
|
|
|
188 |
" <td>NaN</td>\n",
|
189 |
" <td>NaN</td>\n",
|
190 |
" <td>NaN</td>\n",
|
|
|
191 |
" </tr>\n",
|
192 |
" <tr>\n",
|
193 |
" <th>...</th>\n",
|
|
|
218 |
" <td>2020-12-31 23:58:00</td>\n",
|
219 |
" <td>100.0</td>\n",
|
220 |
" <td>68.0</td>\n",
|
221 |
+
" <td>63.2</td>\n",
|
222 |
+
" <td>20.0</td>\n",
|
223 |
" <td>18884.834</td>\n",
|
224 |
" <td>64.4</td>\n",
|
225 |
" <td>0.06</td>\n",
|
|
|
227 |
" <td>23.4</td>\n",
|
228 |
" <td>...</td>\n",
|
229 |
" <td>71.0</td>\n",
|
230 |
+
" <td>69.0</td>\n",
|
231 |
" <td>23.145000</td>\n",
|
232 |
" <td>123.8</td>\n",
|
233 |
" <td>56.25</td>\n",
|
|
|
236 |
" <td>123.42</td>\n",
|
237 |
" <td>61.6</td>\n",
|
238 |
" <td>122.36</td>\n",
|
|
|
239 |
" </tr>\n",
|
240 |
" <tr>\n",
|
241 |
" <th>2072150</th>\n",
|
242 |
" <td>2020-12-31 23:58:00</td>\n",
|
243 |
" <td>100.0</td>\n",
|
244 |
" <td>68.0</td>\n",
|
245 |
+
" <td>63.2</td>\n",
|
246 |
+
" <td>20.0</td>\n",
|
247 |
" <td>18884.834</td>\n",
|
248 |
" <td>64.4</td>\n",
|
249 |
" <td>0.06</td>\n",
|
|
|
251 |
" <td>23.4</td>\n",
|
252 |
" <td>...</td>\n",
|
253 |
" <td>71.0</td>\n",
|
254 |
+
" <td>69.0</td>\n",
|
255 |
" <td>23.145000</td>\n",
|
256 |
" <td>123.8</td>\n",
|
257 |
" <td>56.25</td>\n",
|
|
|
260 |
" <td>123.42</td>\n",
|
261 |
" <td>61.6</td>\n",
|
262 |
" <td>122.36</td>\n",
|
|
|
263 |
" </tr>\n",
|
264 |
" <tr>\n",
|
265 |
" <th>2072151</th>\n",
|
266 |
" <td>2020-12-31 23:59:00</td>\n",
|
267 |
" <td>100.0</td>\n",
|
268 |
" <td>68.0</td>\n",
|
269 |
+
" <td>63.2</td>\n",
|
270 |
+
" <td>20.0</td>\n",
|
271 |
" <td>19345.508</td>\n",
|
272 |
" <td>64.3</td>\n",
|
273 |
" <td>0.06</td>\n",
|
|
|
275 |
" <td>23.4</td>\n",
|
276 |
" <td>...</td>\n",
|
277 |
" <td>71.0</td>\n",
|
278 |
+
" <td>69.0</td>\n",
|
279 |
" <td>23.145000</td>\n",
|
280 |
" <td>123.8</td>\n",
|
281 |
" <td>56.25</td>\n",
|
|
|
284 |
" <td>123.42</td>\n",
|
285 |
" <td>61.6</td>\n",
|
286 |
" <td>122.36</td>\n",
|
|
|
287 |
" </tr>\n",
|
288 |
" <tr>\n",
|
289 |
" <th>2072152</th>\n",
|
290 |
" <td>2020-12-31 23:59:00</td>\n",
|
291 |
" <td>100.0</td>\n",
|
292 |
" <td>68.0</td>\n",
|
293 |
+
" <td>63.2</td>\n",
|
294 |
+
" <td>20.0</td>\n",
|
295 |
" <td>19345.508</td>\n",
|
296 |
" <td>64.3</td>\n",
|
297 |
" <td>0.06</td>\n",
|
|
|
299 |
" <td>23.4</td>\n",
|
300 |
" <td>...</td>\n",
|
301 |
" <td>71.0</td>\n",
|
302 |
+
" <td>69.0</td>\n",
|
303 |
" <td>23.145000</td>\n",
|
304 |
" <td>123.8</td>\n",
|
305 |
" <td>56.25</td>\n",
|
|
|
308 |
" <td>123.42</td>\n",
|
309 |
" <td>61.6</td>\n",
|
310 |
" <td>122.36</td>\n",
|
|
|
311 |
" </tr>\n",
|
312 |
" <tr>\n",
|
313 |
" <th>2072153</th>\n",
|
314 |
" <td>2021-01-01 00:00:00</td>\n",
|
315 |
" <td>100.0</td>\n",
|
316 |
" <td>68.0</td>\n",
|
317 |
+
" <td>63.2</td>\n",
|
318 |
+
" <td>20.0</td>\n",
|
319 |
" <td>18650.232</td>\n",
|
320 |
" <td>64.1</td>\n",
|
321 |
" <td>0.06</td>\n",
|
|
|
323 |
" <td>22.9</td>\n",
|
324 |
" <td>...</td>\n",
|
325 |
" <td>71.0</td>\n",
|
326 |
+
" <td>69.0</td>\n",
|
327 |
" <td>23.788947</td>\n",
|
328 |
" <td>123.8</td>\n",
|
329 |
" <td>56.25</td>\n",
|
|
|
332 |
" <td>123.42</td>\n",
|
333 |
" <td>61.6</td>\n",
|
334 |
" <td>122.36</td>\n",
|
|
|
335 |
" </tr>\n",
|
336 |
" </tbody>\n",
|
337 |
"</table>\n",
|
338 |
+
"<p>2072154 rows Γ 30 columns</p>\n",
|
339 |
"</div>"
|
340 |
],
|
341 |
"text/plain": [
|
342 |
+
" date zone_047_hw_valve rtu_004_sat_sp_tn \\\n",
|
343 |
"0 2018-01-01 00:00:00 100.0 69.0 \n",
|
344 |
"1 2018-01-01 00:01:00 100.0 69.0 \n",
|
345 |
"2 2018-01-01 00:02:00 100.0 69.0 \n",
|
|
|
352 |
"2072152 2020-12-31 23:59:00 100.0 68.0 \n",
|
353 |
"2072153 2021-01-01 00:00:00 100.0 68.0 \n",
|
354 |
"\n",
|
355 |
+
" zone_047_temp zone_047_fan_spd rtu_004_fltrd_sa_flow_tn \\\n",
|
356 |
+
"0 67.5 20.0 9265.604 \n",
|
357 |
+
"1 67.5 20.0 9265.604 \n",
|
358 |
+
"2 67.5 20.0 9708.240 \n",
|
359 |
+
"3 67.5 20.0 9611.638 \n",
|
360 |
+
"4 67.5 20.0 9215.110 \n",
|
361 |
"... ... ... ... \n",
|
362 |
+
"2072149 63.2 20.0 18884.834 \n",
|
363 |
+
"2072150 63.2 20.0 18884.834 \n",
|
364 |
+
"2072151 63.2 20.0 19345.508 \n",
|
365 |
+
"2072152 63.2 20.0 19345.508 \n",
|
366 |
+
"2072153 63.2 20.0 18650.232 \n",
|
367 |
"\n",
|
368 |
" rtu_004_sa_temp rtu_004_pa_static_stpt_tn rtu_004_oa_flow_tn \\\n",
|
369 |
"0 66.1 0.06 0.000000 \n",
|
|
|
378 |
"2072152 64.3 0.06 3154.390000 \n",
|
379 |
"2072153 64.1 0.06 3076.270000 \n",
|
380 |
"\n",
|
381 |
+
" rtu_004_oadmpr_pct ... zone_047_heating_sp Unnamed: 47_y \\\n",
|
382 |
+
"0 28.0 ... NaN NaN \n",
|
383 |
+
"1 28.0 ... NaN NaN \n",
|
384 |
+
"2 28.0 ... NaN NaN \n",
|
385 |
+
"3 28.0 ... NaN NaN \n",
|
386 |
+
"4 28.0 ... NaN NaN \n",
|
387 |
+
"... ... ... ... ... \n",
|
388 |
+
"2072149 23.4 ... 71.0 69.0 \n",
|
389 |
+
"2072150 23.4 ... 71.0 69.0 \n",
|
390 |
+
"2072151 23.4 ... 71.0 69.0 \n",
|
391 |
+
"2072152 23.4 ... 71.0 69.0 \n",
|
392 |
+
"2072153 22.9 ... 71.0 69.0 \n",
|
393 |
"\n",
|
394 |
+
" hvac_S hp_hws_temp aru_001_cwr_temp aru_001_cws_fr_gpm \\\n",
|
395 |
+
"0 NaN 75.3 NaN NaN \n",
|
396 |
+
"1 NaN 75.3 NaN NaN \n",
|
397 |
+
"2 NaN 75.3 NaN NaN \n",
|
398 |
+
"3 NaN 75.3 NaN NaN \n",
|
399 |
+
"4 NaN 75.3 NaN NaN \n",
|
400 |
+
"... ... ... ... ... \n",
|
401 |
+
"2072149 23.145000 123.8 56.25 54.71 \n",
|
402 |
+
"2072150 23.145000 123.8 56.25 54.71 \n",
|
403 |
+
"2072151 23.145000 123.8 56.25 54.71 \n",
|
404 |
+
"2072152 23.145000 123.8 56.25 54.71 \n",
|
405 |
+
"2072153 23.788947 123.8 56.25 54.71 \n",
|
406 |
"\n",
|
407 |
+
" aru_001_cws_temp aru_001_hwr_temp aru_001_hws_fr_gpm \\\n",
|
408 |
+
"0 NaN NaN NaN \n",
|
409 |
+
"1 NaN NaN NaN \n",
|
410 |
+
"2 NaN NaN NaN \n",
|
411 |
+
"3 NaN NaN NaN \n",
|
412 |
+
"4 NaN NaN NaN \n",
|
413 |
+
"... ... ... ... \n",
|
414 |
+
"2072149 56.4 123.42 61.6 \n",
|
415 |
+
"2072150 56.4 123.42 61.6 \n",
|
416 |
+
"2072151 56.4 123.42 61.6 \n",
|
417 |
+
"2072152 56.4 123.42 61.6 \n",
|
418 |
+
"2072153 56.4 123.42 61.6 \n",
|
419 |
"\n",
|
420 |
+
" aru_001_hws_temp \n",
|
421 |
+
"0 NaN \n",
|
422 |
+
"1 NaN \n",
|
423 |
+
"2 NaN \n",
|
424 |
+
"3 NaN \n",
|
425 |
+
"4 NaN \n",
|
426 |
+
"... ... \n",
|
427 |
+
"2072149 122.36 \n",
|
428 |
+
"2072150 122.36 \n",
|
429 |
+
"2072151 122.36 \n",
|
430 |
+
"2072152 122.36 \n",
|
431 |
+
"2072153 122.36 \n",
|
432 |
+
"\n",
|
433 |
+
"[2072154 rows x 30 columns]"
|
434 |
]
|
435 |
},
|
436 |
+
"execution_count": 3,
|
437 |
"metadata": {},
|
438 |
"output_type": "execute_result"
|
439 |
}
|
440 |
],
|
441 |
"source": [
|
442 |
+
"merged = pd.read_csv(r'C:\\Users\\jerin\\Downloads\\lbnlbldg59\\lbnlbldg59\\lbnlbldg59.processed\\LBNLBLDG59\\clean_Bldg59_2018to2020\\clean data\\long_merge.csv')\n",
|
443 |
"\n",
|
444 |
+
"zone = \"47\"\n",
|
445 |
"\n",
|
446 |
"if zone in [\"36\", \"37\", \"38\", \"39\", \"40\", \"41\", \"42\", \"64\", \"65\", \"66\", \"67\", \"68\", \"69\", \"70\"]:\n",
|
447 |
" rtu = \"rtu_001\"\n",
|
|
|
456 |
" rtu = \"rtu_002\"\n",
|
457 |
" wing = \"hvac_N\"\n",
|
458 |
"#merged is the dataframe\n",
|
459 |
+
"sorted = merged[[\"date\"]+[col for col in merged.columns if zone in col or rtu in col or wing in col]+[\"hp_hws_temp\", \"aru_001_cwr_temp\" , \"aru_001_cws_fr_gpm\" ,\"aru_001_cws_temp\",\"aru_001_hwr_temp\" ,\"aru_001_hws_fr_gpm\" ,\"aru_001_hws_temp\"]]\n",
|
460 |
"sorted"
|
461 |
]
|
462 |
},
|
463 |
+
{
|
464 |
+
"cell_type": "code",
|
465 |
+
"execution_count": 100,
|
466 |
+
"metadata": {},
|
467 |
+
"outputs": [],
|
468 |
+
"source": [
|
469 |
+
"correlation_matrix = sorted.loc[:, sorted.columns != 'date'].corr()\n",
|
470 |
+
"plt.figure(figsize=(15, 10))\n",
|
471 |
+
"sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n",
|
472 |
+
"plt.title('Pearson Correlation Coefficients')\n",
|
473 |
+
"plt.show()"
|
474 |
+
]
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"cell_type": "code",
|
478 |
+
"execution_count": 102,
|
479 |
+
"metadata": {},
|
480 |
+
"outputs": [
|
481 |
+
{
|
482 |
+
"name": "stdout",
|
483 |
+
"output_type": "stream",
|
484 |
+
"text": [
|
485 |
+
"zone_047_fan_spd ---- 0.3838842710385038 ---- zone_047_temp\n",
|
486 |
+
"rtu_004_sa_temp ---- 0.5636316174287519 ---- zone_047_temp\n",
|
487 |
+
"rtu_004_ra_temp ---- 0.32776265464886917 ---- zone_047_temp\n",
|
488 |
+
"rtu_004_oa_temp ---- 0.3911499150089511 ---- zone_047_temp\n",
|
489 |
+
"rtu_004_ma_temp ---- 0.3800818291020465 ---- zone_047_temp\n",
|
490 |
+
"hvac_S ---- 0.3163506114497974 ---- zone_047_hw_valve\n",
|
491 |
+
"hvac_S ---- 0.42500326788919984 ---- rtu_004_fltrd_sa_flow_tn\n",
|
492 |
+
"hvac_S ---- 0.4794994590105312 ---- rtu_004_oa_temp\n",
|
493 |
+
"hvac_S ---- 0.37653522078249596 ---- rtu_004_ma_temp\n",
|
494 |
+
"hvac_S ---- 0.45054590590454646 ---- rtu_004_sf_vfd_spd_fbk_tn\n",
|
495 |
+
"hvac_S ---- 0.3910776435479394 ---- rtu_004_rf_vfd_spd_fbk_tn\n",
|
496 |
+
"aru_001_cwr_temp ---- 0.4337890009515319 ---- zone_047_temp\n",
|
497 |
+
"aru_001_cwr_temp ---- 0.5103744910713975 ---- hvac_S\n",
|
498 |
+
"aru_001_cws_fr_gpm ---- 0.5251959795850137 ---- zone_047_temp\n",
|
499 |
+
"aru_001_cws_fr_gpm ---- 0.4816297584385553 ---- hvac_S\n",
|
500 |
+
"aru_001_cws_temp ---- 0.576461860142355 ---- zone_047_temp\n",
|
501 |
+
"aru_001_cws_temp ---- 0.5060071970556257 ---- hvac_S\n"
|
502 |
+
]
|
503 |
+
}
|
504 |
+
],
|
505 |
+
"source": [
|
506 |
+
"highly_correlated_cols = set()\n",
|
507 |
+
"for i in range(len(correlation_matrix.columns)):\n",
|
508 |
+
" for j in range(i):\n",
|
509 |
+
" if abs(correlation_matrix.iloc[i, j]) > 0.3:\n",
|
510 |
+
" colname_i = correlation_matrix.columns[i]\n",
|
511 |
+
" colname_j = correlation_matrix.columns[j]\n",
|
512 |
+
" if (colname_i != colname_j) and (colname_i==\"zone_047_temp\" or colname_j==\"zone_047_temp\" or colname_i==\"hvac_S\" or colname_j==\"hvac_S\"):\n",
|
513 |
+
" print(colname_i,\"----\",abs(correlation_matrix.iloc[i, j]),\"----\",colname_j)\n",
|
514 |
+
" highly_correlated_cols.add(colname_i)\n",
|
515 |
+
" highly_correlated_cols.add(colname_j)\n",
|
516 |
+
" \n",
|
517 |
+
" "
|
518 |
+
]
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"cell_type": "code",
|
522 |
+
"execution_count": 19,
|
523 |
+
"metadata": {},
|
524 |
+
"outputs": [
|
525 |
+
{
|
526 |
+
"data": {
|
527 |
+
"text/plain": [
|
528 |
+
"date 0\n",
|
529 |
+
"zone_047_hw_valve 0\n",
|
530 |
+
"rtu_004_sat_sp_tn 0\n",
|
531 |
+
"zone_047_temp 0\n",
|
532 |
+
"zone_047_fan_spd 0\n",
|
533 |
+
"rtu_004_fltrd_sa_flow_tn 0\n",
|
534 |
+
"rtu_004_sa_temp 0\n",
|
535 |
+
"rtu_004_pa_static_stpt_tn 0\n",
|
536 |
+
"rtu_004_oa_flow_tn 0\n",
|
537 |
+
"rtu_004_oadmpr_pct 0\n",
|
538 |
+
"rtu_004_econ_stpt_tn 0\n",
|
539 |
+
"rtu_004_ra_temp 0\n",
|
540 |
+
"rtu_004_oa_temp 0\n",
|
541 |
+
"rtu_004_ma_temp 0\n",
|
542 |
+
"rtu_004_sf_vfd_spd_fbk_tn 0\n",
|
543 |
+
"rtu_004_rf_vfd_spd_fbk_tn 0\n",
|
544 |
+
"rtu_004_fltrd_gnd_lvl_plenum_press_tn 0\n",
|
545 |
+
"rtu_004_fltrd_lvl2_plenum_press_tn 0\n",
|
546 |
+
"zone_047_cooling_sp 0\n",
|
547 |
+
"Unnamed: 47_x 0\n",
|
548 |
+
"zone_047_heating_sp 0\n",
|
549 |
+
"Unnamed: 47_y 0\n",
|
550 |
+
"hvac_S 0\n",
|
551 |
+
"hp_hws_temp 0\n",
|
552 |
+
"aru_001_cwr_temp 667858\n",
|
553 |
+
"aru_001_cws_fr_gpm 667858\n",
|
554 |
+
"aru_001_cws_temp 667858\n",
|
555 |
+
"aru_001_hwr_temp 0\n",
|
556 |
+
"aru_001_hws_fr_gpm 0\n",
|
557 |
+
"aru_001_hws_temp 0\n",
|
558 |
+
"dtype: int64"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
"execution_count": 19,
|
562 |
+
"metadata": {},
|
563 |
+
"output_type": "execute_result"
|
564 |
+
}
|
565 |
+
],
|
566 |
+
"source": [
|
567 |
+
"final_df = sorted.copy()\n",
|
568 |
+
"final_df['date'] = pd.to_datetime(final_df['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
569 |
+
"final_df = final_df[ (final_df.date.dt.date >date(2020, 1, 1)) & (final_df.date.dt.date< date(2020, 12, 30))]\n",
|
570 |
+
"final_df.isna().sum()"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"cell_type": "code",
|
575 |
+
"execution_count": 29,
|
576 |
+
"metadata": {},
|
577 |
+
"outputs": [],
|
578 |
+
"source": [
|
579 |
+
"%matplotlib qt\n",
|
580 |
+
"for i in final_df.columns[11:14]:\n",
|
581 |
+
" plt.plot(final_df['date'],final_df[i])\n",
|
582 |
+
"plt.show()"
|
583 |
+
]
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"cell_type": "code",
|
587 |
+
"execution_count": 7,
|
588 |
+
"metadata": {},
|
589 |
+
"outputs": [
|
590 |
+
{
|
591 |
+
"name": "stderr",
|
592 |
+
"output_type": "stream",
|
593 |
+
"text": [
|
594 |
+
"c:\\Users\\jerin\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:205: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
595 |
+
" super().__init__(**kwargs)\n"
|
596 |
+
]
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"name": "stdout",
|
600 |
+
"output_type": "stream",
|
601 |
+
"text": [
|
602 |
+
"Epoch 1/2\n",
|
603 |
+
"\u001b[1m12174/12174\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m811s\u001b[0m 66ms/step - loss: 0.0019 - val_loss: 9.6280e-04\n",
|
604 |
+
"Epoch 2/2\n",
|
605 |
+
"\u001b[1m12174/12174\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m814s\u001b[0m 67ms/step - loss: 7.9909e-04 - val_loss: 7.6609e-04\n",
|
606 |
+
"\u001b[1m24348/24348\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m120s\u001b[0m 5ms/step\n",
|
607 |
+
"\u001b[1m10434/10434\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m58s\u001b[0m 6ms/step\n"
|
608 |
+
]
|
609 |
+
}
|
610 |
+
],
|
611 |
+
"source": [
|
612 |
+
"\n",
|
613 |
+
"dataset = final_df[['rtu_004_oa_temp','rtu_004_ra_temp','hp_hws_temp','rtu_004_ma_temp','rtu_004_sa_temp']].values\n",
|
614 |
+
"\n",
|
615 |
+
"# dataset = final_df[['hvac_S','rtu_004_ra_temp','rtu_004_oa_temp','rtu_004_ma_temp','rtu_004_fltrd_sa_flow_tn',\n",
|
616 |
+
"# 'rtu_004_sf_vfd_spd_fbk_tn','rtu_004_rf_vfd_spd_fbk_tn','zone_047_temp']].values\n",
|
617 |
+
"# dataset = final_df[['rtu_004_fltrd_sa_flow_tn','rtu_004_sf_vfd_spd_fbk_tn','rtu_004_rf_vfd_spd_fbk_tn',\n",
|
618 |
+
"# 'rtu_004_oa_temp','rtu_004_ma_temp','zone_047_fan_spd','zone_047_hw_valve','rtu_004_sa_temp','zone_047_temp']].values\n",
|
619 |
+
"dataset = dataset.astype('float32')\n",
|
620 |
+
"\n",
|
621 |
+
"\n",
|
622 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
623 |
+
"dataset = scaler.fit_transform(dataset)\n",
|
624 |
+
"train_size = int(len(dataset)* 0.30)\n",
|
625 |
+
"test_size = len(dataset) - train_size\n",
|
626 |
+
"test,train = dataset[0:train_size,:],dataset[train_size:len(dataset),:]\n",
|
627 |
+
"\n",
|
628 |
+
"def create_dataset(dataset,time_step):\n",
|
629 |
+
" # x1,x2,x3,x4,x5,x6,x7, Y = [],[],[],[],[],[],[],[]\n",
|
630 |
+
" x1,x2,x3,Y = [],[],[],[]\n",
|
631 |
+
" for i in range(len(dataset)-time_step-1):\n",
|
632 |
+
" x1.append(dataset[i:(i+time_step), 0])\n",
|
633 |
+
" x2.append(dataset[i:(i+time_step), 1])\n",
|
634 |
+
" x3.append(dataset[i:(i+time_step), 2])\n",
|
635 |
+
" # x4.append(dataset[i:(i+time_step), 3])\n",
|
636 |
+
" # x5.append(dataset[i:(i+time_step), 4])\n",
|
637 |
+
" # x6.append(dataset[i:(i+time_step), 5])\n",
|
638 |
+
" # x7.append(dataset[i:(i+time_step), 6])\n",
|
639 |
+
" Y.append([dataset[i + time_step, 3],dataset[i + time_step, 4]])\n",
|
640 |
+
" # x1,x2,x3,x4,x5,x6,x7,Y = np.array(x1),np.array(x2),np.array(x3), np.array(x4),np.array(x5),np.array(x6),np.array(x7),np.array(Y)\n",
|
641 |
+
" x1,x2,x3,Y = np.array(x1),np.array(x2),np.array(x3),np.array(Y)\n",
|
642 |
+
" # Y = np.reshape(Y,(len(Y),1))\n",
|
643 |
+
" return np.stack([x1,x2,x3],axis=2),Y\n",
|
644 |
+
"\n",
|
645 |
+
"\n",
|
646 |
+
"\n",
|
647 |
+
"\n",
|
648 |
+
"time_step = 60\n",
|
649 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
650 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
651 |
+
"\n",
|
652 |
+
"\n",
|
653 |
+
"model = Sequential()\n",
|
654 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
655 |
+
"model.add(LSTM(units=50))\n",
|
656 |
+
"model.add(Dense(units=2))\n",
|
657 |
+
"\n",
|
658 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
659 |
+
"\n",
|
660 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1)\n",
|
661 |
+
"\n",
|
662 |
+
"train_predict = model.predict(X_train)\n",
|
663 |
+
"test_predict = model.predict(X_test)\n"
|
664 |
+
]
|
665 |
+
},
|
666 |
+
{
|
667 |
+
"cell_type": "code",
|
668 |
+
"execution_count": 18,
|
669 |
+
"metadata": {},
|
670 |
+
"outputs": [],
|
671 |
+
"source": [
|
672 |
+
"%matplotlib qt\n",
|
673 |
+
"\n",
|
674 |
+
"# plt.plot(y_test[:,0], label='Original Testing Data', color='blue')\n",
|
675 |
+
"# plt.plot(test_predict[:,0], label='Predicted Testing Data', color='red')\n",
|
676 |
+
"plt.plot(y_test[:,1], label='Original Testing Data', color='green')\n",
|
677 |
+
"plt.plot(test_predict[:,1], label='Predicted Testing Data', color='orange')\n",
|
678 |
+
"anomalies = np.where(abs(test_predict[:,1] - y_test[:,0]) > 0.5)[0]\n",
|
679 |
+
"plt.scatter(anomalies,test_predict[anomalies,1], color='black',marker =\"o\",s=100 )\n",
|
680 |
+
"plt.title('Testing Data - Predicted vs Actual')\n",
|
681 |
+
"plt.xlabel('Time')\n",
|
682 |
+
"plt.ylabel('Value')\n",
|
683 |
+
"plt.legend()\n",
|
684 |
+
"plt.show()"
|
685 |
+
]
|
686 |
+
},
|
687 |
+
{
|
688 |
+
"cell_type": "markdown",
|
689 |
+
"metadata": {},
|
690 |
+
"source": [
|
691 |
+
"LSTM autoencoder"
|
692 |
+
]
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"cell_type": "markdown",
|
696 |
+
"metadata": {},
|
697 |
+
"source": [
|
698 |
+
"----------------------------"
|
699 |
+
]
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"cell_type": "code",
|
703 |
+
"execution_count": 246,
|
704 |
+
"metadata": {},
|
705 |
+
"outputs": [
|
706 |
+
{
|
707 |
+
"name": "stderr",
|
708 |
+
"output_type": "stream",
|
709 |
+
"text": [
|
710 |
+
"c:\\Users\\jerin\\anaconda3\\envs\\smartbuilding\\Lib\\site-packages\\keras\\src\\layers\\rnn\\rnn.py:205: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n",
|
711 |
+
" super().__init__(**kwargs)\n"
|
712 |
+
]
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"name": "stdout",
|
716 |
+
"output_type": "stream",
|
717 |
+
"text": [
|
718 |
+
"\u001b[1m11487/24348\u001b[0m \u001b[32mβββββββββ\u001b[0m\u001b[37mβββββββββββ\u001b[0m \u001b[1m2:07\u001b[0m 10ms/step"
|
719 |
+
]
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"ename": "",
|
723 |
+
"evalue": "",
|
724 |
+
"output_type": "error",
|
725 |
+
"traceback": [
|
726 |
+
"\u001b[1;31mThe Kernel crashed while executing code in the current cell or a previous cell. \n",
|
727 |
+
"\u001b[1;31mPlease review the code in the cell(s) to identify a possible cause of the failure. \n",
|
728 |
+
"\u001b[1;31mClick <a href='https://aka.ms/vscodeJupyterKernelCrash'>here</a> for more info. \n",
|
729 |
+
"\u001b[1;31mView Jupyter <a href='command:jupyter.viewOutput'>log</a> for further details."
|
730 |
+
]
|
731 |
+
}
|
732 |
+
],
|
733 |
+
"source": [
|
734 |
+
"\n",
|
735 |
+
"# dataset = final_df[['zone_047_temp','hvac_S','rtu_004_sa_temp']].values\n",
|
736 |
+
"\n",
|
737 |
+
"# dataset = final_df[['hvac_S','rtu_004_ra_temp','rtu_004_oa_temp','rtu_004_ma_temp','rtu_004_fltrd_sa_flow_tn',\n",
|
738 |
+
"# 'rtu_004_sf_vfd_spd_fbk_tn','rtu_004_rf_vfd_spd_fbk_tn','zone_047_temp']].values\n",
|
739 |
+
"dataset = final_df[['rtu_004_fltrd_sa_flow_tn','rtu_004_sf_vfd_spd_fbk_tn','rtu_004_rf_vfd_spd_fbk_tn',\n",
|
740 |
+
" 'rtu_004_oa_temp','rtu_004_ma_temp','zone_047_fan_spd','zone_047_hw_valve','rtu_004_ra_temp','rtu_004_sa_temp','zone_047_temp']].values\n",
|
741 |
+
"dataset = dataset.astype('float32')\n",
|
742 |
+
"\n",
|
743 |
+
"\n",
|
744 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
745 |
+
"dataset = scaler.fit_transform(dataset)\n",
|
746 |
+
"test_size = int(len(dataset)* 0.30)\n",
|
747 |
+
"test, train = dataset[0:test_size,:],dataset[test_size:len(dataset),:]\n",
|
748 |
+
"\n",
|
749 |
+
"def create_dataset(dataset,time_step):\n",
|
750 |
+
" x1,x2,x3,x4,x5,x6,x7,x8,x9, Y = [],[],[],[],[],[],[],[],[],[]\n",
|
751 |
+
"\n",
|
752 |
+
" for i in range(0,len(dataset)-time_step-1):\n",
|
753 |
+
" x1.append(dataset[i:(i+time_step), 0])\n",
|
754 |
+
" x2.append(dataset[i:(i+time_step), 1])\n",
|
755 |
+
" x3.append(dataset[i:(i+time_step), 2])\n",
|
756 |
+
" x4.append(dataset[i:(i+time_step), 3])\n",
|
757 |
+
" x5.append(dataset[i:(i+time_step), 4])\n",
|
758 |
+
" x6.append(dataset[i:(i+time_step), 5])\n",
|
759 |
+
" x7.append(dataset[i:(i+time_step), 6])\n",
|
760 |
+
" x8.append(dataset[i:(i+time_step), 7])\n",
|
761 |
+
" x9.append(dataset[i:(i+time_step), 8])\n",
|
762 |
+
" Y.append(dataset[i:(i+time_step), 8])\n",
|
763 |
+
" x1,x2,x3,x4,x5,x6,x7,x8,x9,Y = np.array(x1),np.array(x2),np.array(x3), np.array(x4),np.array(x5),np.array(x6),np.array(x7),np.array(x8),np.array(x9),np.array(Y)\n",
|
764 |
+
" \n",
|
765 |
+
" # Y = np.reshape(Y,(len(Y),1))\n",
|
766 |
+
" return np.stack([x1,x2,x3,x4,x5,x6,x7,x8,x9],axis=2),Y\n",
|
767 |
+
"\n",
|
768 |
+
"\n",
|
769 |
+
"\n",
|
770 |
+
"\n",
|
771 |
+
"time_step = 60\n",
|
772 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
773 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
774 |
+
"\n",
|
775 |
+
"\n",
|
776 |
+
"model = Sequential()\n",
|
777 |
+
"model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
778 |
+
"# model.add(LSTM(units=30))\n",
|
779 |
+
"# model.add(Dense(units=time_step))\n",
|
780 |
+
"\n",
|
781 |
+
"model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
782 |
+
"\n",
|
783 |
+
"# model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=2, batch_size=64, verbose=1)\n",
|
784 |
+
"\n",
|
785 |
+
"train_predict = model.predict(X_train)\n",
|
786 |
+
"# test_predict = model.predict(X_test)\n"
|
787 |
+
]
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"cell_type": "code",
|
791 |
+
"execution_count": 244,
|
792 |
+
"metadata": {},
|
793 |
+
"outputs": [
|
794 |
+
{
|
795 |
+
"data": {
|
796 |
+
"text/plain": [
|
797 |
+
"(779111, 60, 9)"
|
798 |
+
]
|
799 |
+
},
|
800 |
+
"execution_count": 244,
|
801 |
+
"metadata": {},
|
802 |
+
"output_type": "execute_result"
|
803 |
+
}
|
804 |
+
],
|
805 |
+
"source": [
|
806 |
+
"X_train.shape"
|
807 |
+
]
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"cell_type": "code",
|
811 |
+
"execution_count": null,
|
812 |
+
"metadata": {},
|
813 |
+
"outputs": [],
|
814 |
+
"source": [
|
815 |
+
"mo"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "code",
|
820 |
+
"execution_count": 241,
|
821 |
+
"metadata": {},
|
822 |
+
"outputs": [],
|
823 |
+
"source": [
|
824 |
+
"%matplotlib qt\n",
|
825 |
+
"time = 10\n",
|
826 |
+
"mse = (y_test[time] - test_predict[0])**2\n",
|
827 |
+
"anomalies = np.where(mse > 0.0001)[0]\n",
|
828 |
+
"plt.plot(y_test[time], label='Original Data')\n",
|
829 |
+
"plt.plot(test_predict[time], label='predicted Data')\n",
|
830 |
+
"plt.scatter(anomalies,test_predict[time,anomalies], color='red', label='Anomalies')\n",
|
831 |
+
"plt.legend()\n",
|
832 |
+
"plt.show()"
|
833 |
+
]
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"cell_type": "code",
|
837 |
+
"execution_count": 242,
|
838 |
+
"metadata": {},
|
839 |
+
"outputs": [
|
840 |
+
{
|
841 |
+
"data": {
|
842 |
+
"text/html": [
|
843 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\">Model: \"sequential_19\"</span>\n",
|
844 |
+
"</pre>\n"
|
845 |
+
],
|
846 |
+
"text/plain": [
|
847 |
+
"\u001b[1mModel: \"sequential_19\"\u001b[0m\n"
|
848 |
+
]
|
849 |
+
},
|
850 |
+
"metadata": {},
|
851 |
+
"output_type": "display_data"
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"data": {
|
855 |
+
"text/html": [
|
856 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\">βββββββββββββββββββββββββββββββββββ³βββββββββββββββββββββββββ³ββββββββββββββββ\n",
|
857 |
+
"β<span style=\"font-weight: bold\"> Layer (type) </span>β<span style=\"font-weight: bold\"> Output Shape </span>β<span style=\"font-weight: bold\"> Param # </span>β\n",
|
858 |
+
"β‘βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
859 |
+
"β lstm_39 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">50</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">12,000</span> β\n",
|
860 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
861 |
+
"β lstm_40 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">LSTM</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">30</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">9,720</span> β\n",
|
862 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
863 |
+
"β dense_26 (<span style=\"color: #0087ff; text-decoration-color: #0087ff\">Dense</span>) β (<span style=\"color: #00d7ff; text-decoration-color: #00d7ff\">None</span>, <span style=\"color: #00af00; text-decoration-color: #00af00\">60</span>) β <span style=\"color: #00af00; text-decoration-color: #00af00\">1,860</span> β\n",
|
864 |
+
"βββββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββ\n",
|
865 |
+
"</pre>\n"
|
866 |
+
],
|
867 |
+
"text/plain": [
|
868 |
+
"βββββββββββββββββββββββββββββββββββ³βββββββββββββββββββββββββ³ββββββββββββββββ\n",
|
869 |
+
"β\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0mβ\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0mβ\n",
|
870 |
+
"β‘βββββββββββββββββββοΏ½οΏ½οΏ½βββββββββββββββββββββββββββββββββββββββββββββββββββββββ©\n",
|
871 |
+
"β lstm_39 (\u001b[38;5;33mLSTM\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m60\u001b[0m, \u001b[38;5;34m50\u001b[0m) β \u001b[38;5;34m12,000\u001b[0m β\n",
|
872 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
873 |
+
"β lstm_40 (\u001b[38;5;33mLSTM\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m30\u001b[0m) β \u001b[38;5;34m9,720\u001b[0m β\n",
|
874 |
+
"βββββββββββββββββββββββββββββββββββΌβββββββββββββββββββββββββΌββββββββββββββββ€\n",
|
875 |
+
"β dense_26 (\u001b[38;5;33mDense\u001b[0m) β (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m60\u001b[0m) β \u001b[38;5;34m1,860\u001b[0m β\n",
|
876 |
+
"βββββββββββββββββββββββββββββββββββ΄βββββββββββββββββββββββββ΄ββββββββββββββββ\n"
|
877 |
+
]
|
878 |
+
},
|
879 |
+
"metadata": {},
|
880 |
+
"output_type": "display_data"
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"data": {
|
884 |
+
"text/html": [
|
885 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Total params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">70,742</span> (276.34 KB)\n",
|
886 |
+
"</pre>\n"
|
887 |
+
],
|
888 |
+
"text/plain": [
|
889 |
+
"\u001b[1m Total params: \u001b[0m\u001b[38;5;34m70,742\u001b[0m (276.34 KB)\n"
|
890 |
+
]
|
891 |
+
},
|
892 |
+
"metadata": {},
|
893 |
+
"output_type": "display_data"
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"data": {
|
897 |
+
"text/html": [
|
898 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">23,580</span> (92.11 KB)\n",
|
899 |
+
"</pre>\n"
|
900 |
+
],
|
901 |
+
"text/plain": [
|
902 |
+
"\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m23,580\u001b[0m (92.11 KB)\n"
|
903 |
+
]
|
904 |
+
},
|
905 |
+
"metadata": {},
|
906 |
+
"output_type": "display_data"
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"data": {
|
910 |
+
"text/html": [
|
911 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Non-trainable params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">0</span> (0.00 B)\n",
|
912 |
+
"</pre>\n"
|
913 |
+
],
|
914 |
+
"text/plain": [
|
915 |
+
"\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n"
|
916 |
+
]
|
917 |
+
},
|
918 |
+
"metadata": {},
|
919 |
+
"output_type": "display_data"
|
920 |
+
},
|
921 |
+
{
|
922 |
+
"data": {
|
923 |
+
"text/html": [
|
924 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"font-weight: bold\"> Optimizer params: </span><span style=\"color: #00af00; text-decoration-color: #00af00\">47,162</span> (184.23 KB)\n",
|
925 |
+
"</pre>\n"
|
926 |
+
],
|
927 |
+
"text/plain": [
|
928 |
+
"\u001b[1m Optimizer params: \u001b[0m\u001b[38;5;34m47,162\u001b[0m (184.23 KB)\n"
|
929 |
+
]
|
930 |
+
},
|
931 |
+
"metadata": {},
|
932 |
+
"output_type": "display_data"
|
933 |
+
}
|
934 |
+
],
|
935 |
+
"source": [
|
936 |
+
"model.summary()"
|
937 |
+
]
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"cell_type": "code",
|
941 |
+
"execution_count": 238,
|
942 |
+
"metadata": {},
|
943 |
+
"outputs": [
|
944 |
+
{
|
945 |
+
"data": {
|
946 |
+
"text/plain": [
|
947 |
+
"array([-0.00162351, -0.00127119, -0.00132501, -0.00043088, -0.00357354,\n",
|
948 |
+
" -0.00349951, -0.00703096, -0.00679523, 0.00243503, 0.00075096,\n",
|
949 |
+
" 0.015773 , 0.01411158, 0.01689583, 0.01593572, 0.00665802,\n",
|
950 |
+
" 0.0068891 , -0.001706 , -0.00310844, -0.00871575, -0.00967073,\n",
|
951 |
+
" -0.00820547, -0.00687617, 0.00930512, 0.00670969, 0.00769156,\n",
|
952 |
+
" 0.01000088, -0.00052458, 0.00010484, -0.00573552, -0.00811213,\n",
|
953 |
+
" -0.01016176, -0.01063424, -0.01580012, -0.01502603, -0.01243931,\n",
|
954 |
+
" -0.01488668, 0.00733459, 0.00564003, 0.01374102, 0.01534522,\n",
|
955 |
+
" 0.00324941, 0.00375515, -0.0078848 , -0.00780392, -0.01223874,\n",
|
956 |
+
" -0.01329106, -0.00772917, -0.00823385, 0.01035273, 0.01039612,\n",
|
957 |
+
" 0.01731664, 0.01493615, 0.00356281, 0.00522107, -0.00680918,\n",
|
958 |
+
" -0.00461727, -0.00997645, -0.01072395, -0.00542653, -0.00710839],\n",
|
959 |
+
" dtype=float32)"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
"execution_count": 238,
|
963 |
+
"metadata": {},
|
964 |
+
"output_type": "execute_result"
|
965 |
+
}
|
966 |
+
],
|
967 |
+
"source": [
|
968 |
+
"test_predict[0]-y_test[0]"
|
969 |
+
]
|
970 |
+
},
|
971 |
{
|
972 |
"cell_type": "code",
|
973 |
"execution_count": null,
|