Spaces:
Sleeping
Sleeping
Merge branch 'lstm_pipeline' of hf.co:spaces/smartbuildings/smart-buildings into lstm_pipeline
Browse files- mqttpublisher.ipynb +0 -0
- physLSTM/lstm_vav_rtu1.ipynb +66 -21
- src/main.py +18 -4
- src/vav/VAVPipeline.py +131 -18
mqttpublisher.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
physLSTM/lstm_vav_rtu1.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -23,7 +23,7 @@
|
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
-
"execution_count":
|
27 |
"metadata": {},
|
28 |
"outputs": [],
|
29 |
"source": [
|
@@ -32,7 +32,7 @@
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
-
"execution_count":
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
38 |
"source": [
|
@@ -51,12 +51,6 @@
|
|
51 |
" ):\n",
|
52 |
" cols.append(column)\n",
|
53 |
"\n",
|
54 |
-
"\n",
|
55 |
-
"# for rtu in rtus:\n",
|
56 |
-
"# for column in merged.columns:\n",
|
57 |
-
"# if f\"rtu_00{rtu}_fltrd_sa\" or f\"rtu_00{rtu}_sa_temp\" in column:\n",
|
58 |
-
"# cols.append(column)\n",
|
59 |
-
"\n",
|
60 |
"cols = (\n",
|
61 |
" [\"date\"]\n",
|
62 |
" + cols\n",
|
@@ -82,14 +76,14 @@
|
|
82 |
},
|
83 |
{
|
84 |
"cell_type": "code",
|
85 |
-
"execution_count":
|
86 |
"metadata": {},
|
87 |
"outputs": [
|
88 |
{
|
89 |
"name": "stderr",
|
90 |
"output_type": "stream",
|
91 |
"text": [
|
92 |
-
"C:\\Users\\arbal\\AppData\\Local\\Temp\\
|
93 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
94 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
95 |
"\n",
|
@@ -115,7 +109,7 @@
|
|
115 |
},
|
116 |
{
|
117 |
"cell_type": "code",
|
118 |
-
"execution_count":
|
119 |
"metadata": {},
|
120 |
"outputs": [
|
121 |
{
|
@@ -124,7 +118,7 @@
|
|
124 |
"[]"
|
125 |
]
|
126 |
},
|
127 |
-
"execution_count":
|
128 |
"metadata": {},
|
129 |
"output_type": "execute_result"
|
130 |
}
|
@@ -144,7 +138,46 @@
|
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "code",
|
147 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
"metadata": {},
|
149 |
"outputs": [
|
150 |
{
|
@@ -161,7 +194,7 @@
|
|
161 |
},
|
162 |
{
|
163 |
"cell_type": "code",
|
164 |
-
"execution_count":
|
165 |
"metadata": {},
|
166 |
"outputs": [
|
167 |
{
|
@@ -170,7 +203,7 @@
|
|
170 |
"(1073512, 391818)"
|
171 |
]
|
172 |
},
|
173 |
-
"execution_count":
|
174 |
"metadata": {},
|
175 |
"output_type": "execute_result"
|
176 |
}
|
@@ -181,7 +214,7 @@
|
|
181 |
},
|
182 |
{
|
183 |
"cell_type": "code",
|
184 |
-
"execution_count":
|
185 |
"metadata": {},
|
186 |
"outputs": [
|
187 |
{
|
@@ -190,7 +223,7 @@
|
|
190 |
"['scaler_vav_1.pkl']"
|
191 |
]
|
192 |
},
|
193 |
-
"execution_count":
|
194 |
"metadata": {},
|
195 |
"output_type": "execute_result"
|
196 |
}
|
@@ -208,7 +241,7 @@
|
|
208 |
},
|
209 |
{
|
210 |
"cell_type": "code",
|
211 |
-
"execution_count":
|
212 |
"metadata": {},
|
213 |
"outputs": [],
|
214 |
"source": [
|
@@ -231,7 +264,7 @@
|
|
231 |
},
|
232 |
{
|
233 |
"cell_type": "code",
|
234 |
-
"execution_count":
|
235 |
"metadata": {},
|
236 |
"outputs": [
|
237 |
{
|
@@ -251,7 +284,7 @@
|
|
251 |
},
|
252 |
{
|
253 |
"cell_type": "code",
|
254 |
-
"execution_count":
|
255 |
"metadata": {},
|
256 |
"outputs": [
|
257 |
{
|
@@ -304,6 +337,18 @@
|
|
304 |
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
|
305 |
]
|
306 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
307 |
{
|
308 |
"cell_type": "code",
|
309 |
"execution_count": 55,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 9,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
+
"execution_count": 10,
|
27 |
"metadata": {},
|
28 |
"outputs": [],
|
29 |
"source": [
|
|
|
32 |
},
|
33 |
{
|
34 |
"cell_type": "code",
|
35 |
+
"execution_count": 11,
|
36 |
"metadata": {},
|
37 |
"outputs": [],
|
38 |
"source": [
|
|
|
51 |
" ):\n",
|
52 |
" cols.append(column)\n",
|
53 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"cols = (\n",
|
55 |
" [\"date\"]\n",
|
56 |
" + cols\n",
|
|
|
76 |
},
|
77 |
{
|
78 |
"cell_type": "code",
|
79 |
+
"execution_count": 12,
|
80 |
"metadata": {},
|
81 |
"outputs": [
|
82 |
{
|
83 |
"name": "stderr",
|
84 |
"output_type": "stream",
|
85 |
"text": [
|
86 |
+
"C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_368\\4293840618.py:1: SettingWithCopyWarning: \n",
|
87 |
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
88 |
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
89 |
"\n",
|
|
|
109 |
},
|
110 |
{
|
111 |
"cell_type": "code",
|
112 |
+
"execution_count": 13,
|
113 |
"metadata": {},
|
114 |
"outputs": [
|
115 |
{
|
|
|
118 |
"[]"
|
119 |
]
|
120 |
},
|
121 |
+
"execution_count": 13,
|
122 |
"metadata": {},
|
123 |
"output_type": "execute_result"
|
124 |
}
|
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
+
"execution_count": 14,
|
142 |
+
"metadata": {},
|
143 |
+
"outputs": [
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"text/plain": [
|
147 |
+
"Index(['date', 'zone_069_temp', 'zone_069_fan_spd', 'zone_068_temp',\n",
|
148 |
+
" 'zone_068_fan_spd', 'zone_067_temp', 'zone_067_fan_spd',\n",
|
149 |
+
" 'zone_066_temp', 'zone_066_fan_spd', 'zone_065_temp',\n",
|
150 |
+
" 'zone_065_fan_spd', 'zone_064_temp', 'zone_064_fan_spd',\n",
|
151 |
+
" 'zone_042_temp', 'zone_042_fan_spd', 'zone_041_temp',\n",
|
152 |
+
" 'zone_041_fan_spd', 'zone_040_temp', 'zone_040_fan_spd',\n",
|
153 |
+
" 'zone_039_temp', 'zone_039_fan_spd', 'zone_038_temp',\n",
|
154 |
+
" 'zone_038_fan_spd', 'zone_037_temp', 'zone_037_fan_spd',\n",
|
155 |
+
" 'zone_036_temp', 'zone_036_fan_spd', 'rtu_001_fltrd_sa_flow_tn',\n",
|
156 |
+
" 'rtu_001_sa_temp', 'air_temp_set_1', 'air_temp_set_2',\n",
|
157 |
+
" 'dew_point_temperature_set_1d', 'relative_humidity_set_1',\n",
|
158 |
+
" 'solar_radiation_set_1', 'zone_069_cooling_sp', 'zone_069_heating_sp',\n",
|
159 |
+
" 'zone_067_cooling_sp', 'zone_067_heating_sp', 'zone_066_cooling_sp',\n",
|
160 |
+
" 'zone_066_heating_sp', 'zone_065_cooling_sp', 'zone_065_heating_sp',\n",
|
161 |
+
" 'zone_064_cooling_sp', 'zone_064_heating_sp', 'zone_042_cooling_sp',\n",
|
162 |
+
" 'zone_042_heating_sp', 'zone_041_cooling_sp', 'zone_041_heating_sp',\n",
|
163 |
+
" 'zone_039_cooling_sp', 'zone_039_heating_sp', 'zone_038_cooling_sp',\n",
|
164 |
+
" 'zone_038_heating_sp', 'zone_037_cooling_sp', 'zone_037_heating_sp',\n",
|
165 |
+
" 'zone_036_cooling_sp', 'zone_036_heating_sp'],\n",
|
166 |
+
" dtype='object')"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"execution_count": 14,
|
170 |
+
"metadata": {},
|
171 |
+
"output_type": "execute_result"
|
172 |
+
}
|
173 |
+
],
|
174 |
+
"source": [
|
175 |
+
"traindataset_df.columns"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 15,
|
181 |
"metadata": {},
|
182 |
"outputs": [
|
183 |
{
|
|
|
194 |
},
|
195 |
{
|
196 |
"cell_type": "code",
|
197 |
+
"execution_count": 16,
|
198 |
"metadata": {},
|
199 |
"outputs": [
|
200 |
{
|
|
|
203 |
"(1073512, 391818)"
|
204 |
]
|
205 |
},
|
206 |
+
"execution_count": 16,
|
207 |
"metadata": {},
|
208 |
"output_type": "execute_result"
|
209 |
}
|
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
+
"execution_count": 18,
|
218 |
"metadata": {},
|
219 |
"outputs": [
|
220 |
{
|
|
|
223 |
"['scaler_vav_1.pkl']"
|
224 |
]
|
225 |
},
|
226 |
+
"execution_count": 18,
|
227 |
"metadata": {},
|
228 |
"output_type": "execute_result"
|
229 |
}
|
|
|
241 |
},
|
242 |
{
|
243 |
"cell_type": "code",
|
244 |
+
"execution_count": 10,
|
245 |
"metadata": {},
|
246 |
"outputs": [],
|
247 |
"source": [
|
|
|
264 |
},
|
265 |
{
|
266 |
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
"metadata": {},
|
269 |
"outputs": [
|
270 |
{
|
|
|
284 |
},
|
285 |
{
|
286 |
"cell_type": "code",
|
287 |
+
"execution_count": null,
|
288 |
"metadata": {},
|
289 |
"outputs": [
|
290 |
{
|
|
|
337 |
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=3, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
|
338 |
]
|
339 |
},
|
340 |
+
{
|
341 |
+
"cell_type": "code",
|
342 |
+
"execution_count": 13,
|
343 |
+
"metadata": {},
|
344 |
+
"outputs": [],
|
345 |
+
"source": [
|
346 |
+
"import keras\n",
|
347 |
+
"checkpoint_path = \"lstm_vav_01.keras\"\n",
|
348 |
+
"\n",
|
349 |
+
"model = keras.models.load_model(checkpoint_path)"
|
350 |
+
]
|
351 |
+
},
|
352 |
{
|
353 |
"cell_type": "code",
|
354 |
"execution_count": 55,
|
src/main.py
CHANGED
@@ -30,25 +30,39 @@ def main():
|
|
30 |
num_outputs=rtu_data_pipeline.num_outputs,
|
31 |
)
|
32 |
|
33 |
-
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
# print(vav_pipeline.input_col_names)
|
37 |
|
38 |
# print(len(vav_pipeline.output_col_names))
|
39 |
|
40 |
def on_message(client, userdata, message):
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(message)
|
43 |
if not df_new1 is None and not df_trans1 is None and not df_new2 is None and not df_trans2 is None:
|
44 |
out1,out2,out3,out4 = rtu_anomalizer1.pipeline(df_new1, df_trans1, rtu_data_pipeline.scaler1)
|
45 |
out5,out6,out7,out8 = rtu_anomalizer2.pipeline(df_new2, df_trans2, rtu_data_pipeline.scaler2)
|
46 |
-
print(out2)
|
47 |
|
48 |
broker_address = "localhost"
|
49 |
broker_port = 1883
|
50 |
topic = "sensor_data"
|
51 |
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1)
|
|
|
52 |
client.on_message = on_message
|
53 |
client.connect(broker_address, broker_port)
|
54 |
client.subscribe(topic)
|
|
|
30 |
num_outputs=rtu_data_pipeline.num_outputs,
|
31 |
)
|
32 |
|
33 |
+
vav_pipeline = VAVPipeline(rtu_id=1, scaler_path="src/vav/models/scaler_vav_1.pkl")
|
34 |
|
35 |
+
vav_anomalizer = VAVAnomalizer(
|
36 |
+
rtu_id=1,
|
37 |
+
prediction_model_path="src/vav/models/lstm_vav_01.keras",
|
38 |
+
clustering_model_path="src/vav/models/kmeans_vav_1.pkl",
|
39 |
+
num_inputs=vav_pipeline.num_inputs,
|
40 |
+
num_outputs=vav_pipeline.num_outputs,
|
41 |
+
)
|
42 |
# print(vav_pipeline.input_col_names)
|
43 |
|
44 |
# print(len(vav_pipeline.output_col_names))
|
45 |
|
46 |
def on_message(client, userdata, message):
|
47 |
+
df_new_vav, df_trans_vav = vav_pipeline.fit(message)
|
48 |
+
vav_anomalizer.num_inputs = vav_pipeline.num_inputs
|
49 |
+
vav_anomalizer.num_outputs = vav_pipeline.num_outputs
|
50 |
+
if not df_new_vav is None and not df_trans_vav is None:
|
51 |
+
out_vav = vav_anomalizer.pipeline(
|
52 |
+
df_new_vav, df_trans_vav, vav_pipeline.scaler
|
53 |
+
)
|
54 |
+
|
55 |
df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(message)
|
56 |
if not df_new1 is None and not df_trans1 is None and not df_new2 is None and not df_trans2 is None:
|
57 |
out1,out2,out3,out4 = rtu_anomalizer1.pipeline(df_new1, df_trans1, rtu_data_pipeline.scaler1)
|
58 |
out5,out6,out7,out8 = rtu_anomalizer2.pipeline(df_new2, df_trans2, rtu_data_pipeline.scaler2)
|
59 |
+
#print(out2)
|
60 |
|
61 |
broker_address = "localhost"
|
62 |
broker_port = 1883
|
63 |
topic = "sensor_data"
|
64 |
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1)
|
65 |
+
print("Connecting to broker")
|
66 |
client.on_message = on_message
|
67 |
client.connect(broker_address, broker_port)
|
68 |
client.subscribe(topic)
|
src/vav/VAVPipeline.py
CHANGED
@@ -1,15 +1,41 @@
|
|
1 |
import json
|
|
|
|
|
2 |
from sklearn.preprocessing import StandardScaler
|
3 |
-
from pickle import load
|
4 |
import numpy as np
|
5 |
|
6 |
|
7 |
class VAVPipeline:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
def __init__(self, rtu_id, scaler_path=None, window_size=30):
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
self.window_size = window_size
|
12 |
-
|
13 |
if rtu_id == 1:
|
14 |
self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
|
15 |
if rtu_id == 2:
|
@@ -36,8 +62,6 @@ class VAVPipeline:
|
|
36 |
28,
|
37 |
]
|
38 |
|
39 |
-
outputs = ["temp", "fan_speed"]
|
40 |
-
inputs = ["cooling_sp", "heating_sp"]
|
41 |
self.output_col_names = []
|
42 |
self.input_col_names = [
|
43 |
f"rtu_00{rtu_id}_fltrd_sa_flow_tn",
|
@@ -48,21 +72,37 @@ class VAVPipeline:
|
|
48 |
"relative_humidity_set_1",
|
49 |
"solar_radiation_set_1",
|
50 |
]
|
51 |
-
for zone in self.zones:
|
52 |
-
for output in outputs:
|
53 |
-
self.output_col_names.append(f"zone_0{zone}_{output}")
|
54 |
-
for input in inputs:
|
55 |
-
self.input_col_names.append(f"zone_0{zone}_{input}")
|
56 |
|
57 |
self.column_names = self.output_col_names + self.input_col_names
|
58 |
|
|
|
|
|
|
|
59 |
if scaler_path:
|
60 |
self.scaler = self.get_scaler(scaler_path)
|
61 |
|
62 |
def get_scaler(self, scaler_path):
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def get_window(self, df):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
len_df = len(df)
|
67 |
if len_df > self.window_size:
|
68 |
return df[len_df - (self.window_size + 1) : len_df].astype("float32")
|
@@ -70,26 +110,99 @@ class VAVPipeline:
|
|
70 |
return None
|
71 |
|
72 |
def transform_window(self, df_window):
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
def prepare_input(self, df_trans):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return df_trans[: self.window_size, :].reshape(
|
77 |
(1, self.window_size, len(self.column_names))
|
78 |
)
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
def extract_data_from_message(self, message):
|
81 |
-
|
|
|
82 |
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
-
k = {}
|
86 |
-
for col in self.column_names:
|
87 |
-
k[col] = payload[col]
|
88 |
-
self.df.loc[len_df] = k
|
89 |
return self.df
|
90 |
|
91 |
def fit(self, message):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
df = self.extract_data_from_message(message)
|
|
|
93 |
df_window = self.get_window(df)
|
94 |
if df_window is not None:
|
95 |
df_trans = self.transform_window(df_window)
|
|
|
1 |
import json
|
2 |
+
import joblib
|
3 |
+
import pandas as pd
|
4 |
from sklearn.preprocessing import StandardScaler
|
|
|
5 |
import numpy as np
|
6 |
|
7 |
|
8 |
class VAVPipeline:
|
9 |
+
"""
|
10 |
+
A class representing a Variable Air Volume (VAV) pipeline.
|
11 |
+
|
12 |
+
Attributes:
|
13 |
+
rtu_id (int): The ID of the RTU (Roof Top Unit).
|
14 |
+
scaler_path (str): The path to the scaler file.
|
15 |
+
window_size (int): The size of the sliding window.
|
16 |
+
|
17 |
+
Methods:
|
18 |
+
get_scaler(scaler_path): Loads the scaler from the given path.
|
19 |
+
get_window(df): Returns the sliding window of the given dataframe.
|
20 |
+
transform_window(df_window): Transforms the values of the dataframe using the scaler.
|
21 |
+
prepare_input(df_trans): Prepares the input for the model.
|
22 |
+
get_input_output(df): Extracts the input and output column names from the dataframe.
|
23 |
+
extract_data_from_message(message): Extracts data from the message payload and returns a dataframe.
|
24 |
+
fit(message): Fits the model with the extracted data and returns the prepared input and transformed data.
|
25 |
+
"""
|
26 |
|
27 |
def __init__(self, rtu_id, scaler_path=None, window_size=30):
|
28 |
+
"""
|
29 |
+
Initializes a VAVPipeline object.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
rtu_id (int): The ID of the RTU (Roof Top Unit).
|
33 |
+
scaler_path (str, optional): The path to the scaler file. Defaults to None.
|
34 |
+
window_size (int, optional): The size of the sliding window. Defaults to 30.
|
35 |
+
"""
|
36 |
+
self.get_cols = True
|
37 |
self.window_size = window_size
|
38 |
+
self.rtu_id = rtu_id
|
39 |
if rtu_id == 1:
|
40 |
self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
|
41 |
if rtu_id == 2:
|
|
|
62 |
28,
|
63 |
]
|
64 |
|
|
|
|
|
65 |
self.output_col_names = []
|
66 |
self.input_col_names = [
|
67 |
f"rtu_00{rtu_id}_fltrd_sa_flow_tn",
|
|
|
72 |
"relative_humidity_set_1",
|
73 |
"solar_radiation_set_1",
|
74 |
]
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
self.column_names = self.output_col_names + self.input_col_names
|
77 |
|
78 |
+
self.num_inputs = len(self.input_col_names)
|
79 |
+
self.num_outputs = len(self.output_col_names)
|
80 |
+
|
81 |
if scaler_path:
|
82 |
self.scaler = self.get_scaler(scaler_path)
|
83 |
|
84 |
def get_scaler(self, scaler_path):
|
85 |
+
"""
|
86 |
+
Loads the scaler from the given path.
|
87 |
+
|
88 |
+
Args:
|
89 |
+
scaler_path (str): The path to the scaler file.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
StandardScaler: The loaded scaler object.
|
93 |
+
"""
|
94 |
+
return joblib.load(scaler_path)
|
95 |
|
96 |
def get_window(self, df):
|
97 |
+
"""
|
98 |
+
Returns the sliding window of the given dataframe.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
df (pd.DataFrame): The dataframe.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
pd.DataFrame: The sliding window dataframe.
|
105 |
+
"""
|
106 |
len_df = len(df)
|
107 |
if len_df > self.window_size:
|
108 |
return df[len_df - (self.window_size + 1) : len_df].astype("float32")
|
|
|
110 |
return None
|
111 |
|
112 |
def transform_window(self, df_window):
|
113 |
+
"""
|
114 |
+
Transforms the values of the dataframe using the scaler.
|
115 |
+
|
116 |
+
Args:
|
117 |
+
df_window (pd.DataFrame): The dataframe.
|
118 |
+
|
119 |
+
Returns:
|
120 |
+
np.ndarray: The transformed values.
|
121 |
+
"""
|
122 |
+
return self.scaler.transform(df_window.values)
|
123 |
|
124 |
def prepare_input(self, df_trans):
|
125 |
+
"""
|
126 |
+
Prepares the input for the model.
|
127 |
+
|
128 |
+
Args:
|
129 |
+
df_trans (np.ndarray): The transformed values.
|
130 |
+
|
131 |
+
Returns:
|
132 |
+
np.ndarray: The prepared input.
|
133 |
+
"""
|
134 |
return df_trans[: self.window_size, :].reshape(
|
135 |
(1, self.window_size, len(self.column_names))
|
136 |
)
|
137 |
|
138 |
+
def get_input_output(self, df: pd.DataFrame):
|
139 |
+
"""
|
140 |
+
Extracts the input and output column names from the dataframe.
|
141 |
+
|
142 |
+
Args:
|
143 |
+
df (pd.DataFrame): The dataframe.
|
144 |
+
"""
|
145 |
+
for zone in self.zones:
|
146 |
+
for column in df.columns:
|
147 |
+
if (
|
148 |
+
f"zone_0{zone}" in column
|
149 |
+
and "co2" not in column
|
150 |
+
and "hw_valve" not in column
|
151 |
+
and "cooling_sp" not in column
|
152 |
+
and "heating_sp" not in column
|
153 |
+
):
|
154 |
+
self.output_col_names.append(column)
|
155 |
+
self.input_col_names = [
|
156 |
+
f"rtu_00{self.rtu_id}_fltrd_sa_flow_tn",
|
157 |
+
f"rtu_00{self.rtu_id}_sa_temp",
|
158 |
+
"air_temp_set_1",
|
159 |
+
"air_temp_set_2",
|
160 |
+
"dew_point_temperature_set_1d",
|
161 |
+
"relative_humidity_set_1",
|
162 |
+
"solar_radiation_set_1",
|
163 |
+
]
|
164 |
+
for zone in self.zones:
|
165 |
+
for column in df.columns:
|
166 |
+
if f"zone_0{zone}" in column:
|
167 |
+
if "cooling_sp" in column or "heating_sp" in column:
|
168 |
+
self.input_col_names.append(column)
|
169 |
+
self.column_names = self.output_col_names + self.input_col_names
|
170 |
+
self.num_inputs = len(self.input_col_names)
|
171 |
+
self.num_outputs = len(self.output_col_names)
|
172 |
+
self.df = pd.DataFrame(columns=self.column_names)
|
173 |
+
|
174 |
def extract_data_from_message(self, message):
|
175 |
+
"""
|
176 |
+
Extracts data from the message payload and returns a dataframe.
|
177 |
|
178 |
+
Args:
|
179 |
+
message: The message containing the payload.
|
180 |
+
|
181 |
+
Returns:
|
182 |
+
pd.DataFrame: The extracted data as a dataframe.
|
183 |
+
"""
|
184 |
+
payload = json.loads(message.payload.decode())
|
185 |
+
df = pd.DataFrame.from_dict(payload, orient="index").T
|
186 |
+
if self.get_cols == True:
|
187 |
+
self.get_input_output(df)
|
188 |
+
self.get_cols = False
|
189 |
+
df = df[self.column_names]
|
190 |
+
self.df.loc[len(self.df)] = df.values[0]
|
191 |
|
|
|
|
|
|
|
|
|
192 |
return self.df
|
193 |
|
194 |
def fit(self, message):
|
195 |
+
"""
|
196 |
+
Fits the model with the extracted data and returns the prepared input and transformed data.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
message: The message containing the data.
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
tuple: A tuple containing the prepared input and transformed data.
|
203 |
+
"""
|
204 |
df = self.extract_data_from_message(message)
|
205 |
+
|
206 |
df_window = self.get_window(df)
|
207 |
if df_window is not None:
|
208 |
df_trans = self.transform_window(df_window)
|