Spaces:
Sleeping
Sleeping
import streamlit as st # web development | |
import numpy as np # np mean, np random | |
import pandas as pd # read csv, df manipulation | |
import time # to simulate a real time data, time loop | |
import plotly.express as px # interactive charts | |
import paho.mqtt.client as mqtt | |
import json | |
import warnings | |
from tensorflow.keras.models import load_model | |
import joblib | |
import plotly.graph_objects as go | |
warnings.filterwarnings('ignore') | |
model = load_model(r"src\rtu\models\lstm_4rtu_smooth_02.keras") | |
scaler = joblib.load(r'src\rtu\models\scaler_1.pkl') | |
# kmeans = joblib.load('kmeans_model.pkl') | |
kmeans1 = joblib.load(r'src\rtu\models\kmeans_model1.pkl') | |
kmeans2 = joblib.load(r'src\rtu\models\kmeans_model2.pkl') | |
kmeans3 = joblib.load(r'src\rtu\models\kmeans_model3.pkl') | |
kmeans4 = joblib.load(r'src\rtu\models\kmeans_model4.pkl') | |
# pca = joblib.load('pca_model.pkl') | |
st.set_page_config( | |
page_title = 'Real-Time Data Buliding 59', | |
page_icon = '✅', | |
layout = 'wide' | |
) | |
st.title("Buliding 59 Dashboard") | |
placeholder = st.empty() | |
broker_address = "localhost" | |
broker_port = 1883 | |
topic = "sensor_data" | |
df = pd.DataFrame(columns=['hp_hws_temp', | |
'rtu_003_sa_temp', | |
'rtu_003_oadmpr_pct', | |
'rtu_003_ra_temp', | |
'rtu_003_oa_temp', | |
'rtu_003_ma_temp', | |
'rtu_003_sf_vfd_spd_fbk_tn', | |
'rtu_003_rf_vfd_spd_fbk_tn', | |
'rtu_004_sa_temp', | |
'rtu_004_oadmpr_pct', | |
'rtu_004_ra_temp', | |
'rtu_004_oa_temp', | |
'rtu_004_ma_temp', | |
'rtu_004_sf_vfd_spd_fbk_tn', | |
'rtu_004_rf_vfd_spd_fbk_tn', | |
'rtu_001_sa_temp', | |
'rtu_001_oadmpr_pct', | |
'rtu_001_ra_temp', | |
'rtu_001_oa_temp', | |
'rtu_001_ma_temp', | |
'rtu_001_sf_vfd_spd_fbk_tn', | |
'rtu_001_rf_vfd_spd_fbk_tn', | |
'rtu_002_sa_temp', | |
'rtu_002_oadmpr_pct', | |
'rtu_002_ra_temp', | |
'rtu_002_oa_temp', | |
'rtu_002_ma_temp', | |
'rtu_002_sf_vfd_spd_fbk_tn', | |
'rtu_002_rf_vfd_spd_fbk_tn', | |
# 'rtu_004_sat_sp_tn', | |
# 'rtu_003_sat_sp_tn', | |
# 'rtu_001_sat_sp_tn', | |
# 'rtu_002_sat_sp_tn', | |
'air_temp_set_1', | |
'air_temp_set_2', | |
'dew_point_temperature_set_1d', | |
'relative_humidity_set_1', | |
'solar_radiation_set_1']) | |
actual_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
pred_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
resid_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
distance = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
pca_x = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
pca_y = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] | |
def on_message(client, userdata, message): | |
global df | |
payload = json.loads(message.payload.decode()) | |
hp_hws_temp = payload['hp_hws_temp'] | |
rtu_003_sa_temp = payload['rtu_003_sa_temp'] | |
rtu_003_oadmpr_pct = payload['rtu_003_oadmpr_pct'] | |
rtu_003_ra_temp = payload['rtu_003_ra_temp'] | |
rtu_003_oa_temp = payload['rtu_003_oa_temp'] | |
rtu_003_ma_temp = payload['rtu_003_ma_temp'] | |
rtu_003_sf_vfd_spd_fbk_tn = payload['rtu_003_sf_vfd_spd_fbk_tn'] | |
rtu_003_rf_vfd_spd_fbk_tn =payload['rtu_003_rf_vfd_spd_fbk_tn'] | |
rtu_004_sa_temp = payload['rtu_004_sa_temp'] | |
rtu_004_oadmpr_pct = payload['rtu_004_oadmpr_pct'] | |
rtu_004_ra_temp = payload['rtu_004_ra_temp'] | |
rtu_004_oa_temp = payload['rtu_004_oa_temp'] | |
rtu_004_ma_temp = payload['rtu_004_ma_temp'] | |
rtu_004_sf_vfd_spd_fbk_tn = payload['rtu_004_sf_vfd_spd_fbk_tn'] | |
rtu_004_rf_vfd_spd_fbk_tn = payload['rtu_004_rf_vfd_spd_fbk_tn'] | |
rtu_001_sa_temp = payload['rtu_001_sa_temp'] | |
rtu_001_oadmpr_pct = payload['rtu_001_oadmpr_pct'] | |
rtu_001_ra_temp = payload['rtu_001_ra_temp'] | |
rtu_001_oa_temp = payload['rtu_001_oa_temp'] | |
rtu_001_ma_temp = payload['rtu_001_ma_temp'] | |
rtu_001_sf_vfd_spd_fbk_tn = payload['rtu_001_sf_vfd_spd_fbk_tn'] | |
rtu_001_rf_vfd_spd_fbk_tn =payload['rtu_001_rf_vfd_spd_fbk_tn'] | |
rtu_002_sa_temp = payload['rtu_002_sa_temp'] | |
rtu_002_oadmpr_pct = payload['rtu_002_oadmpr_pct'] | |
rtu_002_ra_temp = payload['rtu_002_ra_temp'] | |
rtu_002_oa_temp = payload['rtu_002_oa_temp'] | |
rtu_002_ma_temp = payload['rtu_002_ma_temp'] | |
rtu_002_sf_vfd_spd_fbk_tn = payload['rtu_002_sf_vfd_spd_fbk_tn'] | |
rtu_002_rf_vfd_spd_fbk_tn = payload['rtu_002_rf_vfd_spd_fbk_tn'] | |
# rtu_004_sat_sp_tn = payload['rtu_004_sat_sp_tn'] | |
# rtu_003_sat_sp_tn = payload['rtu_003_sat_sp_tn'] | |
# rtu_001_sat_sp_tn = payload['rtu_001_sat_sp_tn'] | |
# rtu_002_sat_sp_tn = payload['rtu_002_sat_sp_tn'] | |
air_temp_set_1 = payload['air_temp_set_1'] | |
air_temp_set_2 = payload['air_temp_set_2'] | |
dew_point_temperature_set_1d = payload['dew_point_temperature_set_1d'] | |
relative_humidity_set_1 = payload['relative_humidity_set_1'] | |
solar_radiation_set_1 = payload['solar_radiation_set_1'] | |
len_df = len(df) | |
df.loc[len_df] = {'hp_hws_temp':hp_hws_temp, | |
'rtu_003_sa_temp':rtu_003_sa_temp, | |
'rtu_003_oadmpr_pct': rtu_003_oadmpr_pct, | |
'rtu_003_ra_temp':rtu_003_ra_temp, | |
'rtu_003_oa_temp': rtu_003_oa_temp, | |
'rtu_003_ma_temp': rtu_003_ma_temp, | |
'rtu_003_sf_vfd_spd_fbk_tn': rtu_003_sf_vfd_spd_fbk_tn, | |
'rtu_003_rf_vfd_spd_fbk_tn':rtu_003_rf_vfd_spd_fbk_tn, | |
'rtu_004_sa_temp':rtu_004_sa_temp, | |
'rtu_004_oadmpr_pct':rtu_004_oadmpr_pct, | |
'rtu_004_ra_temp':rtu_004_ra_temp, | |
'rtu_004_oa_temp':rtu_004_oa_temp, | |
'rtu_004_ma_temp':rtu_004_ma_temp, | |
'rtu_004_sf_vfd_spd_fbk_tn':rtu_004_sf_vfd_spd_fbk_tn, | |
'rtu_004_rf_vfd_spd_fbk_tn':rtu_004_rf_vfd_spd_fbk_tn, | |
'rtu_001_sa_temp':rtu_001_sa_temp, | |
'rtu_001_oadmpr_pct': rtu_001_oadmpr_pct, | |
'rtu_001_ra_temp':rtu_001_ra_temp, | |
'rtu_001_oa_temp': rtu_001_oa_temp, | |
'rtu_001_ma_temp': rtu_001_ma_temp, | |
'rtu_001_sf_vfd_spd_fbk_tn': rtu_001_sf_vfd_spd_fbk_tn, | |
'rtu_001_rf_vfd_spd_fbk_tn':rtu_001_rf_vfd_spd_fbk_tn, | |
'rtu_002_sa_temp':rtu_002_sa_temp, | |
'rtu_002_oadmpr_pct':rtu_002_oadmpr_pct, | |
'rtu_002_ra_temp':rtu_002_ra_temp, | |
'rtu_002_oa_temp':rtu_002_oa_temp, | |
'rtu_002_ma_temp':rtu_002_ma_temp, | |
'rtu_002_sf_vfd_spd_fbk_tn':rtu_002_sf_vfd_spd_fbk_tn, | |
'rtu_002_rf_vfd_spd_fbk_tn':rtu_002_rf_vfd_spd_fbk_tn, | |
# 'rtu_004_sat_sp_tn':rtu_004_sat_sp_tn, | |
# 'rtu_003_sat_sp_tn' :rtu_003_sat_sp_tn, | |
# 'rtu_001_sat_sp_tn':rtu_001_sat_sp_tn, | |
# 'rtu_002_sat_sp_tn':rtu_002_sat_sp_tn, | |
'air_temp_set_1':air_temp_set_1, | |
'air_temp_set_2':air_temp_set_2, | |
'dew_point_temperature_set_1d':dew_point_temperature_set_1d, | |
'relative_humidity_set_1':relative_humidity_set_1, | |
'solar_radiation_set_1':solar_radiation_set_1} | |
if len_df>30: | |
df_window = df[len_df-31:len_df] | |
df_window = df_window.astype('float32') | |
df_trans = scaler.transform(df_window) | |
df_new = df_trans[:30,:].reshape((1,30,34))# | |
pred = model.predict(df_new) | |
pred_copy = pred.copy() | |
actual = df_trans[30,:29]# | |
resid = actual - pred | |
#--------- | |
pred.resize((pred.shape[0], pred.shape[1] + len(df_trans[30,29:])))# | |
pred[:, -len(df_trans[30,29:]):] = df_trans[30,29:]# | |
pred = scaler.inverse_transform(np.array(pred)) | |
actual = scaler.inverse_transform(np.array([df_trans[30,:]])) | |
#--------- | |
actual_list.pop(0) | |
pred_list.pop(0) | |
resid_list.pop(0) | |
# distance.pop(0) | |
# pca_x.pop(0) | |
# pca_y.pop(0) | |
actual_list.append(actual[0,1]) | |
pred_list.append(pred[0,1]) | |
resid_list.append(resid[0,1]) | |
# distance.append(np.linalg.norm(pred_copy-kmeans.cluster_centers_[0], ord=2, axis = 1)) | |
# dist_color = [1 if num >= 5 else 0 for num in distance] | |
dist = [] | |
dist.append(np.linalg.norm(resid[:,1:8]-kmeans1.cluster_centers_[0], ord=2, axis = 1)) | |
dist.append(np.linalg.norm(resid[:,8:15]-kmeans2.cluster_centers_[0], ord=2, axis = 1)) | |
dist.append(np.linalg.norm(resid[:,15:22]-kmeans3.cluster_centers_[0], ord=2, axis = 1)) | |
dist.append(np.linalg.norm(resid[:,22:29]-kmeans4.cluster_centers_[0], ord=2, axis = 1)) | |
dist = np.array(dist) | |
# dist_color = [1 if num >= 2 else 0 for num in dist] | |
# pca_cord = pca.transform(resid) | |
# pca_x.append(pca_cord[0,0]) | |
# pca_y.append(pca_cord[0,1]) | |
# clust_center = pca.transform(kmeans.cluster_centers_) | |
# theta = np.linspace(0, 2*np.pi, 100) | |
# radius = 2 | |
# x_circle = clust_center[0, 0] + radius * np.cos(theta) | |
# y_circle = clust_center[0, 1] + radius * np.sin(theta) | |
ind = np.linspace(1, 30, 30) | |
with placeholder.container(): | |
col1, fig_col1, fig_col2 = st.columns(3) | |
with col1: | |
st.header("RTU Status") | |
for i in range(4): | |
rtu = ['RTU 1', 'RTU 2', 'RTU 3', 'RTU 4'] | |
tol = [2,2,2,0.1]#[4.5,4,5,5] | |
status_icon = "🔧" if dist[i,0] > tol[i] else "🔄" | |
status = "Damper or Fan issue" if dist[i,0] > tol[i] else "Normal" | |
status_markdown = f"**{rtu[i]} {status_icon}**\n\nSA Temp: {int(actual[0,1])}°C\nRA Temp: {int(actual[0,3])}°C\n\nStatus: {status}" | |
st.markdown(status_markdown, unsafe_allow_html=True) | |
with fig_col1: | |
# st.markdown("### Fault") | |
st.header("Fault") | |
fig1 = go.Figure() | |
# fig1.add_trace(go.Scatter(x=ind, y=resid_list, mode='lines', name='Actual',line=dict(color='blue'))) | |
# fig1 = px.scatter(x=pca_x, y=pca_y,color=dist_color,color_discrete_map={'1': 'red', '0': 'green'}) | |
# fig1.add_trace(go.Scatter(x=x_circle, y=y_circle, mode='lines',line=dict(color='green'))) | |
colors = ['red' if value > 0.1 else 'blue' for value in dist[:, 0]] | |
fig1 = fig1.add_trace(go.Bar(x=['RTU 1', 'RTU 2', 'RTU 3', 'RTU 4'],y=dist[:, 0],marker_color=colors,width=0.4)) | |
fig1.update_layout(width=500,height=400 ) | |
st.write(fig1) | |
with fig_col2: | |
st.header("Mixed Air temperature") | |
fig2 = go.Figure() | |
fig2.add_trace(go.Scatter(x=ind, y=actual_list, mode='lines', name='Actual',line=dict(color='blue'))) | |
fig2.add_trace(go.Scatter(x=ind, y=pred_list, mode='lines', name='Predicted',line=dict(color='red', dash='dot'))) | |
fig2.update_layout(yaxis_range=[50, 80],width=500,height=400 ) | |
st.write(fig2) | |
st.markdown("### Detailed Data View") | |
st.dataframe(df[len_df-5:len_df]) | |
# time.sleep(1) | |
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1) | |
client.on_message = on_message | |
client.connect(broker_address, broker_port) | |
client.subscribe(topic) | |
client.loop_forever() | |