Spaces:
Sleeping
Sleeping
from collections import deque | |
from src.energy_prediction.EnergyPredictionModel import EnergyPredictionModel | |
from src.energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline | |
from src.vav.VAVAnomalizer import VAVAnomalizer | |
from src.vav.VAVPipeline import VAVPipeline | |
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import mqtt_client | |
import time | |
from src.rtu.RTUPipeline import RTUPipeline | |
from src.rtu.RTUAnomalizer1 import RTUAnomalizer1 | |
from src.rtu.RTUAnomalizer2 import RTUAnomalizer2 | |
import plotly.express as px | |
rtu_data_pipeline = RTUPipeline( | |
scaler1_path="src/rtu/models/scaler_rtu_1_2.pkl", | |
scaler2_path="src/rtu/models/scaler_rtu_3_4.pkl", | |
) | |
rtu_anomalizers = [] | |
rtu_anomalizers.append( | |
RTUAnomalizer1( | |
prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras", | |
clustering_model_paths=[ | |
"src/rtu/models/kmeans_rtu_1.pkl", | |
"src/rtu/models/kmeans_rtu_2.pkl", | |
], | |
pca_model_paths=[ | |
"src/rtu/models/pca_rtu_1.pkl", | |
"src/rtu/models/pca_rtu_2.pkl", | |
], | |
num_inputs=rtu_data_pipeline.num_inputs, | |
num_outputs=rtu_data_pipeline.num_outputs, | |
) | |
) | |
rtu_anomalizers.append( | |
RTUAnomalizer2( | |
prediction_model_path="src/rtu/models/lstm_2rtu_smooth_03.keras", | |
clustering_model_paths=[ | |
"src/rtu/models/kmeans_rtu_3.pkl", | |
"src/rtu/models/kmeans_rtu_4.pkl", | |
], | |
pca_model_paths=[ | |
"src/rtu/models/pca_rtu_3.pkl", | |
"src/rtu/models/pca_rtu_4.pkl", | |
], | |
num_inputs=rtu_data_pipeline.num_inputs, | |
num_outputs=rtu_data_pipeline.num_outputs, | |
) | |
) | |
vav_pipelines = [] | |
vav_anomalizers = [] | |
for i in range(1, 5): | |
vav_pipelines.append( | |
VAVPipeline(rtu_id=i, scaler_path=f"src/vav/models/scaler_vav_{i}.pkl") | |
) | |
for i in range(1, 5): | |
vav_anomalizers.append( | |
VAVAnomalizer( | |
rtu_id=i, | |
prediction_model_path=f"src/vav/models/lstm_vav_0{i}.keras", | |
clustering_model_path=f"src/vav/models/kmeans_vav_{i}.pkl", | |
pca_model_path=f"src/vav/models/pca_vav_{i}.pkl", | |
num_inputs=vav_pipelines[i - 1].num_inputs, | |
num_outputs=vav_pipelines[i - 1].num_outputs, | |
) | |
) | |
all_data = pd.read_csv("bootstrap_data.csv") | |
df_faults = pd.DataFrame(columns=["_______Time_______", "__________Issue__________"]) | |
current_stat = [False, False, False, False] | |
energy_pipeline_north = EnergyPredictionPipeline( | |
scaler_path="src/energy_prediction/models/scalerNorth.pkl", | |
wing="north", | |
bootstrap_data=all_data, | |
) | |
energy_pipeline_south = EnergyPredictionPipeline( | |
scaler_path="src/energy_prediction/models/scalerSouth.pkl", | |
wing="south", | |
bootstrap_data=all_data, | |
) | |
energy_prediction_model_north = EnergyPredictionModel( | |
model_path=r"src/energy_prediction/models/lstm_energy_north_01.keras" | |
) | |
energy_prediction_model_south = EnergyPredictionModel( | |
model_path=r"src/energy_prediction/models/lstm_energy_south_01.keras" | |
) | |
# Set the layout of the page to 'wide' | |
st.set_page_config(layout="wide") | |
# Energy data generating used in Energy Usage Over Time plot ---- REPLACE WITH ACTUAL DATA ---- | |
def generate_energy_data(): | |
times = pd.date_range("2021-01-01", periods=200, freq="1min") | |
energy = np.random.randn(200).cumsum() | |
return pd.DataFrame({"Time": times, "Energy": energy}) | |
# Create three columns for the header | |
header_row1_col1, header_row1_col2, header_row1_col3 = st.columns([0.8, 3, 1]) | |
# Add logo to the first column of the header | |
with header_row1_col1: | |
st.image("logo.png") | |
# Add title to the second column of the header | |
with header_row1_col2: | |
st.markdown( | |
"<h1 style='text-align: center;'>Building 59 - HVAC Dashboard</h1>", | |
unsafe_allow_html=True, | |
) | |
# Add Time and Date to the third column of the header | |
mqtt_client.start_mqtt_client() | |
placeholder_header_time = header_row1_col3.empty() | |
# Create three columns for the first row | |
row1_col1, row1_col2, row1_col3 = st.columns([1.1, 1, 0.75]) | |
# Use a container for RTU Status | |
rtu_status_container = row1_col1.container() | |
rtu_status_container.markdown( | |
""" | |
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px"> | |
<h3 style="color:black;text-align:center;">RTU Status</h3> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
rtu_placeholders = [] | |
rtu_columns = rtu_status_container.columns(4) | |
# Initial placeholder, does not update with streaming | |
for i in range(4): | |
with rtu_columns[i]: | |
placeholder = {"box": st.empty(), "sa_temp": st.empty(), "ra_temp": st.empty()} | |
rtu_placeholders.append(placeholder) | |
placeholder["box"].markdown( | |
f""" | |
<div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'> | |
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
placeholder["sa_temp"].markdown("**SA temp:** -- °F") | |
placeholder["ra_temp"].markdown("**RA temp:** -- °F") | |
# Temperatures streaming and updates | |
def update_status_boxes(df, fault): | |
for i in range(4): | |
sa_temp = df[f"rtu_00{i+1}_sa_temp"].iloc[-1] | |
ra_temp = df[f"rtu_00{i+1}_ra_temp"].iloc[-1] | |
rtu_placeholders[i]["sa_temp"].markdown(f"**SA temp:** {sa_temp} °F") | |
rtu_placeholders[i]["ra_temp"].markdown(f"**RA temp:** {ra_temp} °F") | |
if fault[i] == 1: | |
rtu_placeholders[i]["box"].markdown( | |
f""" | |
<div style='background-color:#ff4d4d;padding:3px;border-radius:5px;margin-bottom:10px'> | |
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
elif fault[i] == 0: | |
rtu_placeholders[i]["box"].markdown( | |
f""" | |
<div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'> | |
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4> | |
</div> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Zones | |
with row1_col2: | |
st.markdown( | |
""" | |
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px"> | |
<h3 style="color:black;text-align:center;">Zones</h3> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
tab1, tab2, tab3, tab4 = st.tabs(["RTU 1", "RTU 2", "RTU 3", "RTU 4"]) | |
with tab1: | |
zones_ = {36, 37, 38, 39, 40, 41, 42, 64, 65, 66, 67, 68, 69, 70} | |
num_cols = 7 | |
rows = 2 | |
for i in range(rows): | |
cols = st.columns(num_cols) | |
if i == 0: | |
for j in range(num_cols): | |
zone_number = (i + 1) * (j + 1) + 35 | |
if zone_number in zones_: | |
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>' | |
with cols[j]: | |
st.markdown(button_html, unsafe_allow_html=True) | |
else: | |
with cols[j]: | |
st.write("") | |
else: | |
for j in range(num_cols): | |
zone_number = (i + 1) * 30 + j + 4 | |
if zone_number in zones_: | |
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>' | |
with cols[j]: | |
st.markdown(button_html, unsafe_allow_html=True) | |
else: | |
with cols[j]: | |
st.write("") | |
with tab2: | |
zones_ = [ | |
19, | |
20, | |
27, | |
28, | |
29, | |
30, | |
31, | |
32, | |
33, | |
34, | |
35, | |
43, | |
44, | |
49, | |
50, | |
57, | |
58, | |
59, | |
60, | |
62, | |
63, | |
71, | |
72, | |
] | |
zones_list = list(zones_) | |
num_cols = 7 | |
rows = 4 | |
zones_list_rows = [ | |
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows) | |
] | |
for row in zones_list_rows: | |
cols = st.columns(num_cols) | |
for col, zone_number in zip(cols, row): | |
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>' | |
with col: | |
st.markdown(button_html, unsafe_allow_html=True) | |
with tab3: | |
zones_ = [18, 25, 26, 45, 48, 55, 56, 61] | |
zones_list = sorted(zones_) | |
num_cols = 7 | |
rows = 2 | |
zones_list_rows = [ | |
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows) | |
] | |
for row in zones_list_rows: | |
cols = st.columns(num_cols) | |
for col, zone_number in zip(cols, row): | |
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>' | |
with col: | |
st.markdown(button_html, unsafe_allow_html=True) | |
with tab4: | |
zones_ = [16, 17, 21, 22, 23, 24, 46, 47, 51, 52, 53, 54] | |
zones_list = sorted(zones_) | |
num_cols = 7 | |
rows = 2 | |
zones_list_rows = [ | |
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows) | |
] | |
for row in zones_list_rows: | |
cols = st.columns(num_cols) | |
for col, zone_number in zip(cols, row): | |
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>' | |
with col: | |
st.markdown(button_html, unsafe_allow_html=True) | |
# Faults | |
with row1_col3: | |
fault_placeholder = {"heading": st.empty(), "dataframe": st.empty()} | |
fault_placeholder["heading"].markdown( | |
""" | |
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px"> | |
<h3 style="color:black;text-align:center;">Fault Log</h3> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
fault_placeholder["dataframe"].dataframe(df_faults) | |
def fault_table_update(fault, df_faults, current_stat, df_time): | |
for i in range(4): | |
if fault[i] == 1 and current_stat[i] == False: | |
df_faults.loc[len(df_faults)] = [ | |
df_time, | |
f"RTU_0{i+1}_fan/damper_fault - Start", | |
] | |
current_stat[i] = True | |
if fault[i] == 0 and current_stat[i] == True: | |
df_faults.loc[len(df_faults)] = [ | |
df_time, | |
f"RTU_0{i+1}_fan/damper_fault - End", | |
] | |
current_stat[i] = False | |
fault_placeholder["dataframe"].dataframe(df_faults) | |
# Details | |
with st.container(): | |
st.markdown( | |
""" | |
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px"> | |
<h3 style="color:black;text-align:center;">Details</h3> | |
</div>""", | |
unsafe_allow_html=True, | |
) | |
# Create three columns | |
row2_row1_col1, row2_row1_col2 = st.columns([0.9, 1.5]) | |
# Floor Plan | |
with row2_row1_col1: | |
st.subheader("Floor Map") | |
st.image("floor_plan.jpg", use_column_width=True) | |
# Energy Comsumption Plots | |
with row2_row1_col2: | |
# Create two rows and two columns | |
row2_row2_col1, row2_row2_col2 = st.columns(2) | |
# cols = st.columns(2) | |
with row2_row2_col1: | |
st.subheader("Energy Usage - North Wing") | |
north_wing_energy_container = st.empty() | |
# with row2_row2_col2: | |
st.subheader("Energy Usage - South Wing") | |
south_wing_energy_container = st.empty() | |
# Energy Comsumption Statistics | |
with row2_row2_col2: | |
st.subheader("Energy Usage Statistics") | |
st.text( | |
f"Average: 475 kWh\nHighest: 600 kWh" | |
) # ---- REPLACE WITH ACTUAL DATA ---- | |
distances = [] | |
def create_residual_plot(resid_pca_list, distance, rtu_id, lim=8): | |
if rtu_id % 2 == 1: | |
ax1 = 0 | |
ax2 = 1 | |
elif rtu_id % 2 == 0: | |
ax1 = 2 | |
ax2 = 3 | |
fig = px.scatter( | |
x=resid_pca_list[:, ax1], | |
y=resid_pca_list[:, ax2], | |
color=distance, | |
labels={"x": "Time", "y": "Residual"}, | |
width=500, | |
height=500, | |
color_discrete_sequence=px.colors.qualitative.Set2, | |
) | |
fig.update_layout( | |
xaxis_range=[-lim, lim], | |
yaxis_range=[-lim, lim], | |
xaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"), | |
yaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"), | |
margin=dict(l=20, r=20, t=20, b=20), | |
hovermode="closest", | |
showlegend=False, | |
autosize=False, | |
hoverlabel=dict(bgcolor="white", font_size=12), | |
hoverlabel_align="left", | |
hoverlabel_font_color="black", | |
hoverlabel_bordercolor="lightgray", | |
) | |
# fig.update_traces(marker=dict(size=5, color="blue")) | |
return fig | |
resid_placeholder = st.empty() | |
resid_vav_placeholder = st.empty() | |
while True: | |
if mqtt_client.data_list: | |
all_data = pd.concat([all_data, pd.DataFrame(mqtt_client.data_list)], axis=0) | |
if len(all_data) > 10080: | |
all_data = all_data.iloc[-10080:] | |
df = pd.DataFrame(all_data) | |
df_time = df["date"].iloc[-1] # Obtain the latest datetime of data | |
with placeholder_header_time: | |
placeholder_header_time.markdown( | |
f""" | |
<h2 style='text-align: center;'> 🕒 {df_time}</h2> | |
""", | |
unsafe_allow_html=True, | |
) | |
# Loop to update | |
dist = None | |
resid_pca_list_rtu = None | |
resid_pca_list_rtu_2 = None | |
resid_pca_list_vav_1 = None | |
resid_pca_list_vav_2 = None | |
rtu_1_distance = None | |
rtu_2_distance = None | |
fault_1 = None | |
fault_2 = None | |
rtu_3_distance = None | |
rtu_4_distance = None | |
fault_3 = None | |
fault_4 = None | |
df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit( | |
pd.DataFrame(mqtt_client.data_list) | |
) | |
vav_1_df_new, vav_1_df_trans = vav_pipelines[0].fit( | |
pd.DataFrame(mqtt_client.data_list) | |
) | |
vav_anomalizers[0].num_inputs = vav_pipelines[0].num_inputs | |
vav_anomalizers[0].num_outputs = vav_pipelines[0].num_outputs | |
vav_2_df_new, vav_2_df_trans = vav_pipelines[1].fit( | |
pd.DataFrame(mqtt_client.data_list) | |
) | |
vav_anomalizers[1].num_inputs = vav_pipelines[1].num_inputs | |
vav_anomalizers[1].num_outputs = vav_pipelines[1].num_outputs | |
vav_3_df_new, vav_3_df_trans = vav_pipelines[2].fit( | |
pd.DataFrame(mqtt_client.data_list) | |
) | |
vav_anomalizers[2].num_inputs = vav_pipelines[2].num_inputs | |
vav_anomalizers[2].num_outputs = vav_pipelines[2].num_outputs | |
vav_4_df_new, vav_4_df_trans = vav_pipelines[3].fit( | |
pd.DataFrame(mqtt_client.data_list) | |
) | |
vav_anomalizers[3].num_inputs = vav_pipelines[3].num_inputs | |
vav_anomalizers[3].num_outputs = vav_pipelines[3].num_outputs | |
energy_df_north = energy_pipeline_north.fit(all_data) | |
energy_df_south = energy_pipeline_south.fit(all_data) | |
if ( | |
not df_new1 is None | |
and not df_trans1 is None | |
and not df_new2 is None | |
and not df_trans2 is None | |
): | |
( | |
actual_list, | |
pred_list, | |
resid_list, | |
resid_pca_list_rtu, | |
dist, | |
rtu_1_distance, | |
rtu_2_distance, | |
fault_1, | |
fault_2, | |
) = rtu_anomalizers[0].pipeline( | |
df_new1, df_trans1, rtu_data_pipeline.scaler1 | |
) | |
( | |
actual_list_2, | |
pred_list_2, | |
resid_list_2, | |
resid_pca_list_rtu_2, | |
dist_2, | |
rtu_3_distance, | |
rtu_4_distance, | |
fault_3, | |
fault_4, | |
) = rtu_anomalizers[1].pipeline( | |
df_new2, df_trans2, rtu_data_pipeline.scaler2 | |
) | |
if not vav_1_df_new is None: | |
( | |
actual_list_vav_1, | |
pred_list_vav_1, | |
resid_list_vav_1, | |
resid_pca_list_vav_1, | |
dist_vav_1, | |
) = vav_anomalizers[0].pipeline( | |
vav_1_df_new, vav_1_df_trans, vav_pipelines[0].scaler | |
) | |
if not vav_2_df_new is None: | |
( | |
actual_list_vav_2, | |
pred_list_vav_2, | |
resid_list_vav_2, | |
resid_pca_list_vav_2, | |
dist_vav_2, | |
) = vav_anomalizers[1].pipeline( | |
vav_2_df_new, vav_2_df_trans, vav_pipelines[1].scaler | |
) | |
if not vav_3_df_new is None: | |
( | |
actual_list_vav_3, | |
pred_list_vav_3, | |
resid_list_vav_3, | |
resid_pca_list_vav_3, | |
dist_vav_3, | |
) = vav_anomalizers[2].pipeline( | |
vav_3_df_new, vav_3_df_trans, vav_pipelines[2].scaler | |
) | |
if not vav_4_df_new is None: | |
( | |
actual_list_vav_4, | |
pred_list_vav_4, | |
resid_list_vav_4, | |
resid_pca_list_vav_4, | |
dist_vav_4, | |
) = vav_anomalizers[3].pipeline( | |
vav_4_df_new, vav_4_df_trans, vav_pipelines[3].scaler | |
) | |
if resid_pca_list_rtu is not None: | |
resid_pca_list_rtu = np.array(resid_pca_list_rtu) | |
resid_pca_list_rtu_2 = np.array(resid_pca_list_rtu_2) | |
if resid_pca_list_rtu is not None: # Plot RTU residuals | |
with resid_placeholder.container(): | |
resid_rtu1_placeholder, resid_rtu2_placeholder = st.columns(2) | |
with resid_rtu1_placeholder: | |
st.subheader("RTU 1 Residuals") | |
fig = create_residual_plot( | |
resid_pca_list_rtu, rtu_1_distance, rtu_id=1 | |
) | |
st.plotly_chart(fig) | |
with resid_rtu2_placeholder: | |
st.subheader("RTU 2 Residuals") | |
fig = create_residual_plot( | |
resid_pca_list_rtu, rtu_2_distance, rtu_id=2 | |
) | |
st.plotly_chart(fig) | |
resid_rtu3_placeholder, resid_rtu4_placeholder = st.columns(2) | |
with resid_rtu3_placeholder: | |
st.subheader("RTU 3 Residuals") | |
fig = create_residual_plot( | |
resid_pca_list_rtu, rtu_3_distance, rtu_id=3 | |
) | |
st.plotly_chart(fig) | |
with resid_rtu4_placeholder: | |
st.subheader("RTU 4 Residuals") | |
fig = create_residual_plot( | |
resid_pca_list_rtu, rtu_4_distance, rtu_id=4 | |
) | |
st.plotly_chart(fig) | |
if resid_pca_list_vav_1 is not None: # Plot VAV residuals | |
with resid_vav_placeholder.container(): | |
resid_rtu_1_vav_placeholder, resid_rtu_2_vav_placeholder = st.columns(2) | |
with resid_rtu_1_vav_placeholder: | |
st.subheader("VAV 1 Residuals") | |
fig = create_residual_plot( | |
np.array(resid_pca_list_vav_1), rtu_4_distance, rtu_id=1, lim=15 | |
) | |
st.plotly_chart(fig) | |
with resid_rtu_2_vav_placeholder: | |
st.subheader("VAV 2 Residuals") | |
fig = create_residual_plot( | |
np.array(resid_pca_list_vav_2), rtu_4_distance, rtu_id=1, lim=15 | |
) | |
st.plotly_chart(fig) | |
resid_rtu_3_vav_placeholder, resid_rtu_4_vav_placeholder = st.columns(2) | |
with resid_rtu_3_vav_placeholder: | |
st.subheader("VAV 3 Residuals") | |
fig = create_residual_plot( | |
np.array(resid_pca_list_vav_3), rtu_4_distance, rtu_id=1, lim=15 | |
) | |
st.plotly_chart(fig) | |
with resid_rtu_4_vav_placeholder: | |
st.subheader("VAV 4 Residuals") | |
fig = create_residual_plot( | |
np.array(resid_pca_list_vav_4), rtu_4_distance, rtu_id=1, lim=15 | |
) | |
st.plotly_chart(fig) | |
current_time = pd.to_datetime(df_time) | |
if energy_df_north is not None: | |
energy_prediction_north = energy_prediction_model_north.pipeline( | |
energy_df_north, energy_pipeline_north.scaler | |
).flatten() | |
x_time = pd.date_range( | |
current_time, periods=len(energy_prediction_north), freq="1h" | |
) | |
with north_wing_energy_container: | |
fig = px.line( | |
x=x_time, | |
y=energy_prediction_north, | |
labels={"x": "Time", "y": "Energy (kWh)"}, | |
height=200, | |
) | |
st.plotly_chart(fig) | |
if energy_df_south is not None: | |
energy_prediction_south = energy_prediction_model_south.pipeline( | |
energy_df_south, energy_pipeline_south.scaler | |
).flatten() | |
x_time = pd.date_range( | |
current_time, periods=len(energy_prediction_south), freq="1h" | |
) | |
with south_wing_energy_container: | |
fig = px.line( | |
x=x_time, | |
y=energy_prediction_south, | |
labels={"x": "Time", "y": "Energy (kWh)"}, | |
height=200, | |
) | |
st.plotly_chart(fig) | |
update_status_boxes(df, [fault_1, fault_2, fault_3, fault_4]) | |
fault_table_update( | |
[fault_1, fault_2, fault_3, fault_4], df_faults, current_stat, df_time | |
) | |
mqtt_client.data_list.clear() | |