smart-buildings / src /vav /VAVPipeline.py
akshayballal's picture
chore: Remove unused pickle files and refactor VAV module
3759ba9
raw
history blame
7.13 kB
import json
import joblib
import pandas as pd
from sklearn.preprocessing import StandardScaler
import numpy as np
class VAVPipeline:
"""
A class representing a Variable Air Volume (VAV) pipeline.
Attributes:
rtu_id (int): The ID of the RTU (Roof Top Unit).
scaler_path (str): The path to the scaler file.
window_size (int): The size of the sliding window.
Methods:
get_scaler(scaler_path): Loads the scaler from the given path.
get_window(df): Returns the sliding window of the given dataframe.
transform_window(df_window): Transforms the values of the dataframe using the scaler.
prepare_input(df_trans): Prepares the input for the model.
get_input_output(df): Extracts the input and output column names from the dataframe.
extract_data_from_message(message): Extracts data from the message payload and returns a dataframe.
fit(message): Fits the model with the extracted data and returns the prepared input and transformed data.
"""
def __init__(self, rtu_id, scaler_path=None, window_size=30):
"""
Initializes a VAVPipeline object.
Args:
rtu_id (int): The ID of the RTU (Roof Top Unit).
scaler_path (str, optional): The path to the scaler file. Defaults to None.
window_size (int, optional): The size of the sliding window. Defaults to 30.
"""
self.get_cols = True
self.window_size = window_size
self.rtu_id = rtu_id
if rtu_id == 1:
self.zones = [69, 68, 67, 66, 65, 64, 42, 41, 40, 39, 38, 37, 36]
if rtu_id == 2:
self.zones = [
72,
71,
63,
62,
60,
59,
58,
57,
50,
49,
44,
43,
35,
34,
33,
32,
31,
30,
29,
28,
]
if rtu_id == 3:
self.zones = [61, 56, 55, 48, 45, 26, 25, 18]
if rtu_id == 4:
self.zones = [16, 17, 21, 23, 24, 46, 47, 51, 52, 53, 54]
self.output_col_names = []
self.input_col_names = [
f"rtu_00{rtu_id}_fltrd_sa_flow_tn",
f"rtu_00{rtu_id}_sa_temp",
"air_temp_set_1",
"air_temp_set_2",
"dew_point_temperature_set_1d",
"relative_humidity_set_1",
"solar_radiation_set_1",
]
self.column_names = self.output_col_names + self.input_col_names
self.num_inputs = len(self.input_col_names)
self.num_outputs = len(self.output_col_names)
if scaler_path:
self.scaler = self.get_scaler(scaler_path)
def get_scaler(self, scaler_path):
"""
Loads the scaler from the given path.
Args:
scaler_path (str): The path to the scaler file.
Returns:
StandardScaler: The loaded scaler object.
"""
return joblib.load(scaler_path)
def get_window(self, df):
"""
Returns the sliding window of the given dataframe.
Args:
df (pd.DataFrame): The dataframe.
Returns:
pd.DataFrame: The sliding window dataframe.
"""
len_df = len(df)
if len_df > self.window_size:
return df[len_df - (self.window_size + 1) : len_df].astype("float32")
else:
return None
def transform_window(self, df_window):
"""
Transforms the values of the dataframe using the scaler.
Args:
df_window (pd.DataFrame): The dataframe.
Returns:
np.ndarray: The transformed values.
"""
return self.scaler.transform(df_window.values)
def prepare_input(self, df_trans):
"""
Prepares the input for the model.
Args:
df_trans (np.ndarray): The transformed values.
Returns:
np.ndarray: The prepared input.
"""
return df_trans[: self.window_size, :].reshape(
(1, self.window_size, len(self.column_names))
)
def get_input_output(self, df: pd.DataFrame):
"""
Extracts the input and output column names from the dataframe.
Args:
df (pd.DataFrame): The dataframe.
"""
for zone in self.zones:
for column in df.columns:
if (
f"zone_0{zone}" in column
and "co2" not in column
and "hw_valve" not in column
and "cooling_sp" not in column
and "heating_sp" not in column
):
self.output_col_names.append(column)
self.input_col_names = [
f"rtu_00{self.rtu_id}_fltrd_sa_flow_tn",
f"rtu_00{self.rtu_id}_sa_temp",
"air_temp_set_1",
"air_temp_set_2",
"dew_point_temperature_set_1d",
"relative_humidity_set_1",
"solar_radiation_set_1",
]
for zone in self.zones:
for column in df.columns:
if f"zone_0{zone}" in column:
if "cooling_sp" in column or "heating_sp" in column:
self.input_col_names.append(column)
self.column_names = self.output_col_names + self.input_col_names
self.num_inputs = len(self.input_col_names)
self.num_outputs = len(self.output_col_names)
self.df = pd.DataFrame(columns=self.column_names)
def extract_data_from_message(self, df: pd.DataFrame):
"""
Extracts data from the message payload and returns a dataframe.
Args:
message: The message containing the payload.
Returns:
pd.DataFrame: The extracted data as a dataframe.
"""
if self.get_cols == True:
self.get_input_output(df)
self.get_cols = False
df = df[self.column_names]
len_df = len(self.df)
if len_df != 0:
self.df = pd.concat([self.df, df], axis=0)
else:
self.df = df
if len_df > 31:
self.df = self.df.iloc[len_df - 31 : len_df]
self.df.loc[len_df] = self.df.mean()
return self.df
else:
return None
def fit(self, df: pd.DataFrame):
"""
Fits the model with the extracted data and returns the prepared input and transformed data.
Args:
message: The message containing the data.
Returns:
tuple: A tuple containing the prepared input and transformed data.
"""
df_window = self.extract_data_from_message(df)
if df_window is not None:
df_trans = self.transform_window(df_window)
df_new = self.prepare_input(df_trans)
else:
df_new = None
df_trans = None
return df_new, df_trans