smart-buildings / dashboard.py
akshayballal's picture
Merge branch 'lstm_pipeline' of hf.co:spaces/smartbuildings/smart-buildings into lstm_pipeline
a2eb081
raw
history blame
22.8 kB
from collections import deque
from src.energy_prediction.EnergyPredictionModel import EnergyPredictionModel
from src.energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline
from src.vav.VAVAnomalizer import VAVAnomalizer
from src.vav.VAVPipeline import VAVPipeline
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mqtt_client
import time
from src.rtu.RTUPipeline import RTUPipeline
from src.rtu.RTUAnomalizer1 import RTUAnomalizer1
from src.rtu.RTUAnomalizer2 import RTUAnomalizer2
import plotly.express as px
rtu_data_pipeline = RTUPipeline(
scaler1_path="src/rtu/models/scaler_rtu_1_2.pkl",
scaler2_path="src/rtu/models/scaler_rtu_3_4.pkl",
)
rtu_anomalizers = []
rtu_anomalizers.append(
RTUAnomalizer1(
prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
clustering_model_paths=[
"src/rtu/models/kmeans_rtu_1.pkl",
"src/rtu/models/kmeans_rtu_2.pkl",
],
pca_model_paths=[
"src/rtu/models/pca_rtu_1.pkl",
"src/rtu/models/pca_rtu_2.pkl",
],
num_inputs=rtu_data_pipeline.num_inputs,
num_outputs=rtu_data_pipeline.num_outputs,
)
)
rtu_anomalizers.append(
RTUAnomalizer2(
prediction_model_path="src/rtu/models/lstm_2rtu_smooth_03.keras",
clustering_model_paths=[
"src/rtu/models/kmeans_rtu_3.pkl",
"src/rtu/models/kmeans_rtu_4.pkl",
],
pca_model_paths=[
"src/rtu/models/pca_rtu_3.pkl",
"src/rtu/models/pca_rtu_4.pkl",
],
num_inputs=rtu_data_pipeline.num_inputs,
num_outputs=rtu_data_pipeline.num_outputs,
)
)
vav_pipelines = []
vav_anomalizers = []
for i in range(1, 5):
vav_pipelines.append(
VAVPipeline(rtu_id=i, scaler_path=f"src/vav/models/scaler_vav_{i}.pkl")
)
for i in range(1, 5):
vav_anomalizers.append(
VAVAnomalizer(
rtu_id=i,
prediction_model_path=f"src/vav/models/lstm_vav_0{i}.keras",
clustering_model_path=f"src/vav/models/kmeans_vav_{i}.pkl",
pca_model_path=f"src/vav/models/pca_vav_{i}.pkl",
num_inputs=vav_pipelines[i - 1].num_inputs,
num_outputs=vav_pipelines[i - 1].num_outputs,
)
)
all_data = pd.read_csv("data/bootstrap_data.csv")
df_faults = pd.DataFrame(columns=["_______Time_______", "__________Issue__________"])
current_stat = [False, False, False, False]
energy_pipeline_north = EnergyPredictionPipeline(
scaler_path="src/energy_prediction/models/scalerNorth.pkl",
wing="north",
bootstrap_data=all_data,
)
energy_pipeline_south = EnergyPredictionPipeline(
scaler_path="src/energy_prediction/models/scalerSouth.pkl",
wing="south",
bootstrap_data=all_data,
)
energy_prediction_model_north = EnergyPredictionModel(
model_path=r"src/energy_prediction/models/lstm_energy_north_01.keras"
)
energy_prediction_model_south = EnergyPredictionModel(
model_path=r"src/energy_prediction/models/lstm_energy_south_01.keras"
)
# Set the layout of the page to 'wide'
st.set_page_config(layout="wide")
# Energy data generating used in Energy Usage Over Time plot ---- REPLACE WITH ACTUAL DATA ----
def generate_energy_data():
times = pd.date_range("2021-01-01", periods=200, freq="1min")
energy = np.random.randn(200).cumsum()
return pd.DataFrame({"Time": times, "Energy": energy})
# Create three columns for the header
header_row1_col1, header_row1_col2, header_row1_col3 = st.columns([0.8, 3, 1])
# Add logo to the first column of the header
with header_row1_col1:
st.image("logo.png")
# Add title to the second column of the header
with header_row1_col2:
st.markdown(
"<h1 style='text-align: center;'>Building 59 - HVAC Dashboard</h1>",
unsafe_allow_html=True,
)
# Add Time and Date to the third column of the header
mqtt_client.start_mqtt_client()
placeholder_header_time = header_row1_col3.empty()
# Create three columns for the first row
row1_col1, row1_col2, row1_col3 = st.columns([1.1, 1, 0.75])
# Use a container for RTU Status
rtu_status_container = row1_col1.container()
rtu_status_container.markdown(
"""
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
<h3 style="color:black;text-align:center;">RTU Status</h3>
</div>""",
unsafe_allow_html=True,
)
rtu_placeholders = []
rtu_columns = rtu_status_container.columns(4)
# Initial placeholder, does not update with streaming
for i in range(4):
with rtu_columns[i]:
placeholder = {"box": st.empty(), "sa_temp": st.empty(), "ra_temp": st.empty()}
rtu_placeholders.append(placeholder)
placeholder["box"].markdown(
f"""
<div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'>
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
</div>
""",
unsafe_allow_html=True,
)
placeholder["sa_temp"].markdown("**SA temp:** -- °F")
placeholder["ra_temp"].markdown("**RA temp:** -- °F")
# Temperatures streaming and updates
def update_status_boxes(df, fault):
for i in range(4):
sa_temp = df[f"rtu_00{i+1}_sa_temp"].iloc[-1]
ra_temp = df[f"rtu_00{i+1}_ra_temp"].iloc[-1]
rtu_placeholders[i]["sa_temp"].markdown(f"**SA temp:** {sa_temp} °F")
rtu_placeholders[i]["ra_temp"].markdown(f"**RA temp:** {ra_temp} °F")
if fault[i] == 1:
rtu_placeholders[i]["box"].markdown(
f"""
<div style='background-color:#ff4d4d;padding:3px;border-radius:5px;margin-bottom:10px'>
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
</div>
""",
unsafe_allow_html=True,
)
elif fault[i] == 0:
rtu_placeholders[i]["box"].markdown(
f"""
<div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'>
<h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
</div>
""",
unsafe_allow_html=True,
)
# Zones
with row1_col2:
st.markdown(
"""
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
<h3 style="color:black;text-align:center;">Zones</h3>
</div>""",
unsafe_allow_html=True,
)
tab1, tab2, tab3, tab4 = st.tabs(["RTU 1", "RTU 2", "RTU 3", "RTU 4"])
with tab1:
zones_ = {36, 37, 38, 39, 40, 41, 42, 64, 65, 66, 67, 68, 69, 70}
num_cols = 7
rows = 2
for i in range(rows):
cols = st.columns(num_cols)
if i == 0:
for j in range(num_cols):
zone_number = (i + 1) * (j + 1) + 35
if zone_number in zones_:
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
with cols[j]:
st.markdown(button_html, unsafe_allow_html=True)
else:
with cols[j]:
st.write("")
else:
for j in range(num_cols):
zone_number = (i + 1) * 30 + j + 4
if zone_number in zones_:
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
with cols[j]:
st.markdown(button_html, unsafe_allow_html=True)
else:
with cols[j]:
st.write("")
with tab2:
zones_ = [
19,
20,
27,
28,
29,
30,
31,
32,
33,
34,
35,
43,
44,
49,
50,
57,
58,
59,
60,
62,
63,
71,
72,
]
zones_list = list(zones_)
num_cols = 7
rows = 4
zones_list_rows = [
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
]
for row in zones_list_rows:
cols = st.columns(num_cols)
for col, zone_number in zip(cols, row):
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
with col:
st.markdown(button_html, unsafe_allow_html=True)
with tab3:
zones_ = [18, 25, 26, 45, 48, 55, 56, 61]
zones_list = sorted(zones_)
num_cols = 7
rows = 2
zones_list_rows = [
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
]
for row in zones_list_rows:
cols = st.columns(num_cols)
for col, zone_number in zip(cols, row):
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
with col:
st.markdown(button_html, unsafe_allow_html=True)
with tab4:
zones_ = [16, 17, 21, 22, 23, 24, 46, 47, 51, 52, 53, 54]
zones_list = sorted(zones_)
num_cols = 7
rows = 2
zones_list_rows = [
zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
]
for row in zones_list_rows:
cols = st.columns(num_cols)
for col, zone_number in zip(cols, row):
button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
with col:
st.markdown(button_html, unsafe_allow_html=True)
# Faults
with row1_col3:
fault_placeholder = {"heading": st.empty(), "dataframe": st.empty()}
fault_placeholder["heading"].markdown(
"""
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
<h3 style="color:black;text-align:center;">Fault Log</h3>
</div>""",
unsafe_allow_html=True,
)
fault_placeholder["dataframe"].dataframe(df_faults)
def fault_table_update(fault, df_faults, current_stat, df_time):
for i in range(4):
if fault[i] == 1 and current_stat[i] == False:
df_faults.loc[len(df_faults)] = [
df_time,
f"RTU_0{i+1}_fan/damper_fault - Start",
]
current_stat[i] = True
if fault[i] == 0 and current_stat[i] == True:
df_faults.loc[len(df_faults)] = [
df_time,
f"RTU_0{i+1}_fan/damper_fault - End",
]
current_stat[i] = False
fault_placeholder["dataframe"].dataframe(df_faults)
# Details
with st.container():
st.markdown(
"""
<div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
<h3 style="color:black;text-align:center;">Details</h3>
</div>""",
unsafe_allow_html=True,
)
# Create three columns
row2_row1_col1, row2_row1_col2 = st.columns([0.9, 1.5])
# Floor Plan
with row2_row1_col1:
st.subheader("Floor Map")
st.image("floor_plan.jpg", use_column_width=True)
# Energy Comsumption Plots
with row2_row1_col2:
# Create two rows and two columns
row2_row2_col1, row2_row2_col2 = st.columns(2)
# cols = st.columns(2)
with row2_row2_col1:
st.subheader("Energy Usage - North Wing")
north_wing_energy_container = st.empty()
# with row2_row2_col2:
st.subheader("Energy Usage - South Wing")
south_wing_energy_container = st.empty()
# Energy Comsumption Statistics
with row2_row2_col2:
st.subheader("Energy Usage Statistics")
st.text(
f"Average: 475 kWh\nHighest: 600 kWh"
) # ---- REPLACE WITH ACTUAL DATA ----
distances = []
def create_residual_plot(resid_pca_list, distance, rtu_id, lim=8):
if rtu_id % 2 == 1:
ax1 = 0
ax2 = 1
elif rtu_id % 2 == 0:
ax1 = 2
ax2 = 3
fig = px.scatter(
x=resid_pca_list[:, ax1],
y=resid_pca_list[:, ax2],
color=distance,
labels={"x": "Time", "y": "Residual"},
width=500,
height=500,
color_discrete_sequence=px.colors.qualitative.Set2,
)
fig.update_layout(
xaxis_range=[-lim, lim],
yaxis_range=[-lim, lim],
xaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
yaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
margin=dict(l=20, r=20, t=20, b=20),
hovermode="closest",
showlegend=False,
autosize=False,
hoverlabel=dict(bgcolor="white", font_size=12),
hoverlabel_align="left",
hoverlabel_font_color="black",
hoverlabel_bordercolor="lightgray",
)
# fig.update_traces(marker=dict(size=5, color="blue"))
return fig
resid_placeholder = st.empty()
resid_vav_placeholder = st.empty()
while True:
if mqtt_client.data_list:
all_data = pd.concat([all_data, pd.DataFrame(mqtt_client.data_list)], axis=0)
if len(all_data) > 10080:
all_data = all_data.iloc[-10080:]
df = pd.DataFrame(all_data)
df_time = df["date"].iloc[-1] # Obtain the latest datetime of data
with placeholder_header_time:
placeholder_header_time.markdown(
f"""
<h2 style='text-align: center;'> 🕒 {df_time}</h2>
""",
unsafe_allow_html=True,
)
# Loop to update
dist = None
resid_pca_list_rtu = None
resid_pca_list_rtu_2 = None
resid_pca_list_vav_1 = None
resid_pca_list_vav_2 = None
rtu_1_distance = None
rtu_2_distance = None
fault_1 = None
fault_2 = None
rtu_3_distance = None
rtu_4_distance = None
fault_3 = None
fault_4 = None
df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(
pd.DataFrame(mqtt_client.data_list)
)
vav_1_df_new, vav_1_df_trans = vav_pipelines[0].fit(
pd.DataFrame(mqtt_client.data_list)
)
vav_anomalizers[0].num_inputs = vav_pipelines[0].num_inputs
vav_anomalizers[0].num_outputs = vav_pipelines[0].num_outputs
vav_2_df_new, vav_2_df_trans = vav_pipelines[1].fit(
pd.DataFrame(mqtt_client.data_list)
)
vav_anomalizers[1].num_inputs = vav_pipelines[1].num_inputs
vav_anomalizers[1].num_outputs = vav_pipelines[1].num_outputs
vav_3_df_new, vav_3_df_trans = vav_pipelines[2].fit(
pd.DataFrame(mqtt_client.data_list)
)
vav_anomalizers[2].num_inputs = vav_pipelines[2].num_inputs
vav_anomalizers[2].num_outputs = vav_pipelines[2].num_outputs
vav_4_df_new, vav_4_df_trans = vav_pipelines[3].fit(
pd.DataFrame(mqtt_client.data_list)
)
vav_anomalizers[3].num_inputs = vav_pipelines[3].num_inputs
vav_anomalizers[3].num_outputs = vav_pipelines[3].num_outputs
energy_df_north = energy_pipeline_north.fit(all_data)
energy_df_south = energy_pipeline_south.fit(all_data)
if (
not df_new1 is None
and not df_trans1 is None
and not df_new2 is None
and not df_trans2 is None
):
(
actual_list,
pred_list,
resid_list,
resid_pca_list_rtu,
dist,
rtu_1_distance,
rtu_2_distance,
fault_1,
fault_2,
) = rtu_anomalizers[0].pipeline(
df_new1, df_trans1, rtu_data_pipeline.scaler1
)
(
actual_list_2,
pred_list_2,
resid_list_2,
resid_pca_list_rtu_2,
dist_2,
rtu_3_distance,
rtu_4_distance,
fault_3,
fault_4,
) = rtu_anomalizers[1].pipeline(
df_new2, df_trans2, rtu_data_pipeline.scaler2
)
if not vav_1_df_new is None:
(
actual_list_vav_1,
pred_list_vav_1,
resid_list_vav_1,
resid_pca_list_vav_1,
dist_vav_1,
) = vav_anomalizers[0].pipeline(
vav_1_df_new, vav_1_df_trans, vav_pipelines[0].scaler
)
if not vav_2_df_new is None:
(
actual_list_vav_2,
pred_list_vav_2,
resid_list_vav_2,
resid_pca_list_vav_2,
dist_vav_2,
) = vav_anomalizers[1].pipeline(
vav_2_df_new, vav_2_df_trans, vav_pipelines[1].scaler
)
if not vav_3_df_new is None:
(
actual_list_vav_3,
pred_list_vav_3,
resid_list_vav_3,
resid_pca_list_vav_3,
dist_vav_3,
) = vav_anomalizers[2].pipeline(
vav_3_df_new, vav_3_df_trans, vav_pipelines[2].scaler
)
if not vav_4_df_new is None:
(
actual_list_vav_4,
pred_list_vav_4,
resid_list_vav_4,
resid_pca_list_vav_4,
dist_vav_4,
) = vav_anomalizers[3].pipeline(
vav_4_df_new, vav_4_df_trans, vav_pipelines[3].scaler
)
if resid_pca_list_rtu is not None:
resid_pca_list_rtu = np.array(resid_pca_list_rtu)
resid_pca_list_rtu_2 = np.array(resid_pca_list_rtu_2)
if resid_pca_list_rtu is not None: # Plot RTU residuals
with resid_placeholder.container():
resid_rtu1_placeholder, resid_rtu2_placeholder = st.columns(2)
with resid_rtu1_placeholder:
st.subheader("RTU 1 Residuals")
fig = create_residual_plot(
resid_pca_list_rtu, rtu_1_distance, rtu_id=1
)
st.plotly_chart(fig)
with resid_rtu2_placeholder:
st.subheader("RTU 2 Residuals")
fig = create_residual_plot(
resid_pca_list_rtu, rtu_2_distance, rtu_id=2
)
st.plotly_chart(fig)
resid_rtu3_placeholder, resid_rtu4_placeholder = st.columns(2)
with resid_rtu3_placeholder:
st.subheader("RTU 3 Residuals")
fig = create_residual_plot(
resid_pca_list_rtu, rtu_3_distance, rtu_id=3
)
st.plotly_chart(fig)
with resid_rtu4_placeholder:
st.subheader("RTU 4 Residuals")
fig = create_residual_plot(
resid_pca_list_rtu, rtu_4_distance, rtu_id=4
)
st.plotly_chart(fig)
if resid_pca_list_vav_1 is not None: # Plot VAV residuals
with resid_vav_placeholder.container():
resid_rtu_1_vav_placeholder, resid_rtu_2_vav_placeholder = st.columns(2)
with resid_rtu_1_vav_placeholder:
st.subheader("VAV 1 Residuals")
fig = create_residual_plot(
np.array(resid_pca_list_vav_1), rtu_4_distance, rtu_id=1, lim=15
)
st.plotly_chart(fig)
with resid_rtu_2_vav_placeholder:
st.subheader("VAV 2 Residuals")
fig = create_residual_plot(
np.array(resid_pca_list_vav_2), rtu_4_distance, rtu_id=1, lim=15
)
st.plotly_chart(fig)
resid_rtu_3_vav_placeholder, resid_rtu_4_vav_placeholder = st.columns(2)
with resid_rtu_3_vav_placeholder:
st.subheader("VAV 3 Residuals")
fig = create_residual_plot(
np.array(resid_pca_list_vav_3), rtu_4_distance, rtu_id=1, lim=15
)
st.plotly_chart(fig)
with resid_rtu_4_vav_placeholder:
st.subheader("VAV 4 Residuals")
fig = create_residual_plot(
np.array(resid_pca_list_vav_4), rtu_4_distance, rtu_id=1, lim=15
)
st.plotly_chart(fig)
current_time = pd.to_datetime(df_time)
if energy_df_north is not None:
energy_prediction_north = energy_prediction_model_north.pipeline(
energy_df_north, energy_pipeline_north.scaler
).flatten()
x_time = pd.date_range(
current_time, periods=len(energy_prediction_north), freq="1h"
)
with north_wing_energy_container:
fig = px.line(
x=x_time,
y=energy_prediction_north,
labels={"x": "Time", "y": "Energy (kWh)"},
height=200,
)
st.plotly_chart(fig)
if energy_df_south is not None:
energy_prediction_south = energy_prediction_model_south.pipeline(
energy_df_south, energy_pipeline_south.scaler
).flatten()
x_time = pd.date_range(
current_time, periods=len(energy_prediction_south), freq="1h"
)
with south_wing_energy_container:
fig = px.line(
x=x_time,
y=energy_prediction_south,
labels={"x": "Time", "y": "Energy (kWh)"},
height=200,
)
st.plotly_chart(fig)
update_status_boxes(df, [fault_1, fault_2, fault_3, fault_4])
fault_table_update(
[fault_1, fault_2, fault_3, fault_4], df_faults, current_stat, df_time
)
mqtt_client.data_list.clear()