File size: 23,558 Bytes
f5e1991
d0f2767
 
 
 
767e14d
 
 
 
 
 
 
 
8e50b17
767e14d
736c64e
 
 
 
767e14d
 
 
 
 
 
d0f2767
 
736c64e
 
d0f2767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e1991
d0f2767
8e50b17
 
d0f2767
8e50b17
 
d0f2767
 
8e50b17
 
d0f2767
 
 
 
f5e1991
 
d0f2767
 
3759ba9
d0f2767
 
 
 
3759ba9
d0f2767
 
 
 
 
 
 
 
 
 
 
 
62fe9df
3759ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e1991
767e14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f2767
 
767e14d
 
 
3759ba9
767e14d
 
 
d0f2767
 
3759ba9
8e50b17
 
 
 
 
 
 
 
a2eb081
c0e84fe
 
 
 
 
 
 
 
767e14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b33198
 
767e14d
 
6b33198
767e14d
 
 
3759ba9
6b33198
3759ba9
 
 
c0e84fe
a2eb081
 
 
 
 
c0e84fe
a2eb081
 
 
 
 
 
c0e84fe
 
767e14d
3759ba9
767e14d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e1991
767e14d
 
 
f5e1991
767e14d
 
 
736c64e
 
f28f1ba
736c64e
f28f1ba
767e14d
 
 
f5e1991
 
 
3759ba9
f5e1991
 
 
 
 
 
 
 
 
8e50b17
f5e1991
 
 
6b33198
f5e1991
 
d0f2767
 
f5e1991
 
 
 
 
 
 
 
 
 
 
8e50b17
f5e1991
 
 
 
767e14d
 
d0f2767
f5e1991
736c64e
6b33198
767e14d
 
 
d0f2767
 
 
767e14d
d0f2767
f5e1991
767e14d
 
 
 
 
 
 
 
 
 
 
 
 
d0f2767
 
 
3759ba9
8e50b17
 
 
 
 
 
 
 
f5e1991
736c64e
f28f1ba
 
736c64e
 
 
 
 
 
 
 
 
f28f1ba
736c64e
 
f5e1991
 
 
d0f2767
 
 
 
 
 
 
3759ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767e14d
 
 
 
 
 
d0f2767
 
 
 
 
 
8e50b17
 
 
3759ba9
d0f2767
 
767e14d
f5e1991
 
 
 
d0f2767
f5e1991
8e50b17
 
 
3759ba9
d0f2767
c0e84fe
d0f2767
 
 
 
 
 
 
 
 
 
 
767e14d
3759ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0f2767
 
 
767e14d
3759ba9
f5e1991
 
 
 
3759ba9
 
 
f5e1991
 
 
 
3759ba9
 
 
f5e1991
 
 
 
 
3759ba9
 
 
f5e1991
 
 
 
3759ba9
 
 
f5e1991
 
3759ba9
 
d0f2767
3759ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28f1ba
3759ba9
d0f2767
3759ba9
d0f2767
 
3759ba9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767e14d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
from collections import deque
from src.energy_prediction.EnergyPredictionModel import EnergyPredictionModel
from src.energy_prediction.EnergyPredictionPipeline import EnergyPredictionPipeline
from src.vav.VAVAnomalizer import VAVAnomalizer
from src.vav.VAVPipeline import VAVPipeline
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import mqtt_client
import time
from src.rtu.RTUPipeline import RTUPipeline
from src.rtu.RTUAnomalizer1 import RTUAnomalizer1
from src.rtu.RTUAnomalizer2 import RTUAnomalizer2
import plotly.express as px
import sys
import subprocess

# subprocess.run([f"{sys.executable}", "mqttpublisher.py"])

rtu_data_pipeline = RTUPipeline(
    scaler1_path="src/rtu/models/scaler_rtu_1_2.pkl",
    scaler2_path="src/rtu/models/scaler_rtu_3_4.pkl",
)

rtu_anomalizers = []

average_energy = 0
max_energy = 0

rtu_anomalizers.append(
    RTUAnomalizer1(
        prediction_model_path="src/rtu/models/lstm_2rtu_smooth_04.keras",
        clustering_model_paths=[
            "src/rtu/models/kmeans_rtu_1.pkl",
            "src/rtu/models/kmeans_rtu_2.pkl",
        ],
        pca_model_paths=[
            "src/rtu/models/pca_rtu_1.pkl",
            "src/rtu/models/pca_rtu_2.pkl",
        ],
        num_inputs=rtu_data_pipeline.num_inputs,
        num_outputs=rtu_data_pipeline.num_outputs,
    )
)

rtu_anomalizers.append(
    RTUAnomalizer2(
        prediction_model_path="src/rtu/models/lstm_2rtu_smooth_03.keras",
        clustering_model_paths=[
            "src/rtu/models/kmeans_rtu_3.pkl",
            "src/rtu/models/kmeans_rtu_4.pkl",
        ],
        pca_model_paths=[
            "src/rtu/models/pca_rtu_3.pkl",
            "src/rtu/models/pca_rtu_4.pkl",
        ],
        num_inputs=rtu_data_pipeline.num_inputs,
        num_outputs=rtu_data_pipeline.num_outputs,
    )
)

vav_pipelines = []
vav_anomalizers = []
for i in range(1, 5):
    vav_pipelines.append(
        VAVPipeline(rtu_id=i, scaler_path=f"src/vav/models/scaler_vav_{i}.pkl")
    )

for i in range(1, 5):
    vav_anomalizers.append(
        VAVAnomalizer(
            rtu_id=i,
            prediction_model_path=f"src/vav/models/lstm_vav_0{i}.keras",
            clustering_model_path=f"src/vav/models/kmeans_vav_{i}.pkl",
            pca_model_path=f"src/vav/models/pca_vav_{i}.pkl",
            num_inputs=vav_pipelines[i - 1].num_inputs,
            num_outputs=vav_pipelines[i - 1].num_outputs,
        )
    )


all_data = pd.read_csv("bootstrap_data.csv")
df_faults = pd.DataFrame(columns=["_______Time_______", "__________Issue__________"])
current_stat = [False, False, False, False]
energy_pipeline_north = EnergyPredictionPipeline(
    scaler_path="src/energy_prediction/models/scalerNorth.pkl",
    wing="north",
    bootstrap_data=all_data,
)
energy_pipeline_south = EnergyPredictionPipeline(
    scaler_path="src/energy_prediction/models/scalerSouth.pkl",
    wing="south",
    bootstrap_data=all_data,
)

energy_prediction_model_north = EnergyPredictionModel(
    model_path=r"src/energy_prediction/models/lstm_energy_north_01.keras"
)

energy_prediction_model_south = EnergyPredictionModel(
    model_path=r"src/energy_prediction/models/lstm_energy_south_01.keras"
)


# Set the layout of the page to 'wide'
st.set_page_config(layout="wide")


# Energy data generating used in Energy Usage Over Time plot ---- REPLACE WITH ACTUAL DATA ----
def generate_energy_data():
    times = pd.date_range("2021-01-01", periods=200, freq="1min")
    energy = np.random.randn(200).cumsum()
    return pd.DataFrame({"Time": times, "Energy": energy})


# Create three columns for the header
header_row1_col1, header_row1_col2, header_row1_col3 = st.columns([0.8, 3, 1])

# Add logo to the first column of the header
with header_row1_col1:
    st.image("logo.png")

# Add title to the second column of the header
with header_row1_col2:
    st.markdown(
        "<h1 style='text-align: center;'>Building 59 - HVAC Dashboard</h1>",
        unsafe_allow_html=True,
    )

# Add Time and Date to the third column of the header
mqtt_client.start_mqtt_client()
placeholder_header_time = header_row1_col3.empty()

# Create three columns for the first row
row1_col1, row1_col2, row1_col3 = st.columns([1.1, 1, 0.75])


# Use a container for RTU Status
rtu_status_container = row1_col1.container()
rtu_status_container.markdown(
    """
    <div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
    <h3 style="color:black;text-align:center;">RTU Status</h3>
    </div>""",
    unsafe_allow_html=True,
)

rtu_placeholders = []
rtu_columns = rtu_status_container.columns(4)

# Initial placeholder, does not update with streaming
for i in range(4):
    with rtu_columns[i]:
        placeholder = {"box": st.empty(), "sa_temp": st.empty(), "ra_temp": st.empty()}
        rtu_placeholders.append(placeholder)
        placeholder["box"].markdown(
            f"""
        <div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'>
            <h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
        </div>
        """,
            unsafe_allow_html=True,
        )
        placeholder["sa_temp"].markdown("**SA temp:**  --  °F")
        placeholder["ra_temp"].markdown("**RA temp:**  --  °F")


# Temperatures streaming and updates
def update_status_boxes(df, fault):
    for i in range(4):
        sa_temp = df[f"rtu_00{i+1}_sa_temp"].iloc[-1]
        ra_temp = df[f"rtu_00{i+1}_ra_temp"].iloc[-1]
        rtu_placeholders[i]["sa_temp"].markdown(f"**SA temp:**  {sa_temp} °F")
        rtu_placeholders[i]["ra_temp"].markdown(f"**RA temp:**  {ra_temp} °F")
        if fault[i] == 1:
            rtu_placeholders[i]["box"].markdown(
                f"""
            <div style='background-color:#ff4d4d;padding:3px;border-radius:5px;margin-bottom:10px'>
                <h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
            </div>
            """,
                unsafe_allow_html=True,
            )
        elif fault[i] == 0:
            rtu_placeholders[i]["box"].markdown(
                f"""
            <div style='background-color:#447F80;padding:3px;border-radius:5px;margin-bottom:10px'>
                <h4 style='color:black;text-align:center;'>RTU{i+1}</h4>
            </div>
            """,
                unsafe_allow_html=True,
            )


# Zones
with row1_col2:
    st.markdown(
        """
    <div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
    <h3 style="color:black;text-align:center;">Zones</h3>
    </div>""",
        unsafe_allow_html=True,
    )

    tab1, tab2, tab3, tab4 = st.tabs(["RTU 1", "RTU 2", "RTU 3", "RTU 4"])

    with tab1:

        zones_ = {36, 37, 38, 39, 40, 41, 42, 64, 65, 66, 67, 68, 69, 70}

        num_cols = 7
        rows = 2

        for i in range(rows):
            cols = st.columns(num_cols)
            if i == 0:
                for j in range(num_cols):
                    zone_number = (i + 1) * (j + 1) + 35
                    if zone_number in zones_:
                        button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
                        with cols[j]:
                            st.markdown(button_html, unsafe_allow_html=True)
                    else:
                        with cols[j]:
                            st.write("")
            else:
                for j in range(num_cols):
                    zone_number = (i + 1) * 30 + j + 4
                    if zone_number in zones_:
                        button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
                        with cols[j]:
                            st.markdown(button_html, unsafe_allow_html=True)
                    else:
                        with cols[j]:
                            st.write("")

    with tab2:
        zones_ = [
            19,
            20,
            27,
            28,
            29,
            30,
            31,
            32,
            33,
            34,
            35,
            43,
            44,
            49,
            50,
            57,
            58,
            59,
            60,
            62,
            63,
            71,
            72,
        ]
        zones_list = list(zones_)
        num_cols = 7
        rows = 4
        zones_list_rows = [
            zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
        ]

        for row in zones_list_rows:
            cols = st.columns(num_cols)
            for col, zone_number in zip(cols, row):
                button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
                with col:
                    st.markdown(button_html, unsafe_allow_html=True)

    with tab3:
        zones_ = [18, 25, 26, 45, 48, 55, 56, 61]
        zones_list = sorted(zones_)
        num_cols = 7
        rows = 2
        zones_list_rows = [
            zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
        ]

        for row in zones_list_rows:
            cols = st.columns(num_cols)
            for col, zone_number in zip(cols, row):
                button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
                with col:
                    st.markdown(button_html, unsafe_allow_html=True)

    with tab4:
        zones_ = [16, 17, 21, 22, 23, 24, 46, 47, 51, 52, 53, 54]
        zones_list = sorted(zones_)
        num_cols = 7
        rows = 2
        zones_list_rows = [
            zones_list[i * num_cols : (i + 1) * num_cols] for i in range(rows)
        ]

        for row in zones_list_rows:
            cols = st.columns(num_cols)
            for col, zone_number in zip(cols, row):
                button_html = f'<button style="width:100%; height:50px; border:none; color:black; background-color:#FFFFFF">{zone_number}</button>'
                with col:
                    st.markdown(button_html, unsafe_allow_html=True)

# Faults
with row1_col3:
    fault_placeholder = {"heading": st.empty(), "dataframe": st.empty()}
    fault_placeholder["heading"].markdown(
        """
    <div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
    <h3 style="color:black;text-align:center;">Fault Log</h3>
    </div>""",
        unsafe_allow_html=True,
    )

    fault_placeholder["dataframe"].dataframe(df_faults)


def fault_table_update(fault, df_faults, current_stat, df_time):
    for i in range(4):
        if fault[i] == 1 and current_stat[i] == False:
            df_faults.loc[len(df_faults)] = [
                df_time,
                f"RTU_0{i+1}_fan/damper_fault - Start",
            ]
            current_stat[i] = True

        if fault[i] == 0 and current_stat[i] == True:
            df_faults.loc[len(df_faults)] = [
                df_time,
                f"RTU_0{i+1}_fan/damper_fault - End",
            ]
            current_stat[i] = False
        fault_placeholder["dataframe"].dataframe(df_faults)


# Details
with st.container():
    st.markdown(
        """
    <div style="background-color:#E2F0D9;padding:1px;border-radius:5px;margin-bottom:20px">
    <h3 style="color:black;text-align:center;">Details</h3>
    </div>""",
        unsafe_allow_html=True,
    )

    # Create three columns
    row2_row1_col1, row2_row1_col2 = st.columns([0.9, 1.5])

    # Floor Plan
    with row2_row1_col1:
        st.subheader("Floor Map")
        st.image("floor_plan.jpg", use_column_width=True)

    # Energy Comsumption Plots
    with row2_row1_col2:

        # Create two rows and two columns
        row2_row2_col1, row2_row2_col2 = st.columns(2)
        # cols = st.columns(2)

        with row2_row2_col1:
            st.subheader("Energy Usage - North Wing")
            north_wing_energy_container = st.empty()

            # with row2_row2_col2:
            st.subheader("Energy Usage - South Wing")
            south_wing_energy_container = st.empty()

            # Energy Comsumption Statistics
            with row2_row2_col2:
                energy_stats_placeholder = {"box": st.empty(), "sub": st.empty()}

                energy_stats_placeholder["box"].subheader("Energy Usage Statistics")
                energy_stats_placeholder["sub"].text(
                    f"Average: {int(average_energy)} kW\nHighest: {int(max_energy)} kW"
                )  # ---- REPLACE WITH ACTUAL DATA ----


distances = []


def create_residual_plot(resid_pca_list, distance, rtu_id, lim=8):
    if rtu_id % 2 == 1:
        ax1 = 0
        ax2 = 1
    elif rtu_id % 2 == 0:
        ax1 = 2
        ax2 = 3
    fig = px.scatter(
        x=resid_pca_list[:, ax1],
        y=resid_pca_list[:, ax2],
        color=distance,
        labels={"x": "Time", "y": "Residual"},
        width=500,
        height=500,
        color_discrete_sequence=px.colors.qualitative.Set2,
    )
    fig.update_layout(
        xaxis_range=[-lim, lim],
        yaxis_range=[-lim, lim],
        xaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
        yaxis=dict(showgrid=True, gridwidth=1, gridcolor="lightgray"),
        margin=dict(l=20, r=20, t=20, b=20),
        hovermode="closest",
        showlegend=False,
        autosize=False,
        hoverlabel=dict(bgcolor="white", font_size=12),
        hoverlabel_align="left",
        hoverlabel_font_color="black",
        hoverlabel_bordercolor="lightgray",
    )
    # fig.update_traces(marker=dict(size=5, color="blue"))

    return fig


resid_placeholder = st.empty()

resid_vav_placeholder = st.empty()

k = 0

while True:

    if mqtt_client.data_list:
        all_data = pd.concat([all_data, pd.DataFrame(mqtt_client.data_list)], axis=0)
        if len(all_data) > 10080:
            all_data = all_data.iloc[-10080:]

        df = pd.DataFrame(all_data)

        df_time = df["date"].iloc[-1]  # Obtain the latest datetime of data

        with placeholder_header_time:
            placeholder_header_time.markdown(
                f"""
            <h2 style='text-align: center;'> 🕒 {df_time}</h2>
            """,
                unsafe_allow_html=True,
            )

        # Loop to update

        dist = None
        resid_pca_list_rtu = None
        resid_pca_list_rtu_2 = None
        resid_pca_list_vav_1 = None
        resid_pca_list_vav_2 = None
        rtu_1_distance = None
        rtu_2_distance = None
        fault_1 = None
        fault_2 = None
        rtu_3_distance = None
        rtu_4_distance = None
        fault_3 = None
        fault_4 = None

        energy = (
            pd.DataFrame(mqtt_client.data_list)["hvac_N"][0].item()
            + pd.DataFrame(mqtt_client.data_list)["hvac_S"][0].item()
        )
        k += 1

        average_energy = average_energy + (energy - average_energy) / k

        if energy > max_energy:
            max_energy = energy

        energy_stats_placeholder["sub"].text(
            f"Average: {int(average_energy)} kW\nHighest: {int(max_energy)} kW"
        )  # ---- REPLACE WITH ACTUAL DATA ----

        df_new1, df_trans1, df_new2, df_trans2 = rtu_data_pipeline.fit(
            pd.DataFrame(mqtt_client.data_list)
        )

        vav_1_df_new, vav_1_df_trans = vav_pipelines[0].fit(
            pd.DataFrame(mqtt_client.data_list)
        )
        vav_anomalizers[0].num_inputs = vav_pipelines[0].num_inputs
        vav_anomalizers[0].num_outputs = vav_pipelines[0].num_outputs

        vav_2_df_new, vav_2_df_trans = vav_pipelines[1].fit(
            pd.DataFrame(mqtt_client.data_list)
        )
        vav_anomalizers[1].num_inputs = vav_pipelines[1].num_inputs
        vav_anomalizers[1].num_outputs = vav_pipelines[1].num_outputs

        vav_3_df_new, vav_3_df_trans = vav_pipelines[2].fit(
            pd.DataFrame(mqtt_client.data_list)
        )
        vav_anomalizers[2].num_inputs = vav_pipelines[2].num_inputs
        vav_anomalizers[2].num_outputs = vav_pipelines[2].num_outputs

        vav_4_df_new, vav_4_df_trans = vav_pipelines[3].fit(
            pd.DataFrame(mqtt_client.data_list)
        )
        vav_anomalizers[3].num_inputs = vav_pipelines[3].num_inputs
        vav_anomalizers[3].num_outputs = vav_pipelines[3].num_outputs

        energy_df_north = energy_pipeline_north.fit(all_data)
        energy_df_south = energy_pipeline_south.fit(all_data)

        if (
            not df_new1 is None
            and not df_trans1 is None
            and not df_new2 is None
            and not df_trans2 is None
        ):
            (
                actual_list,
                pred_list,
                resid_list,
                resid_pca_list_rtu,
                dist,
                rtu_1_distance,
                rtu_2_distance,
                fault_1,
                fault_2,
            ) = rtu_anomalizers[0].pipeline(
                df_new1, df_trans1, rtu_data_pipeline.scaler1
            )
            (
                actual_list_2,
                pred_list_2,
                resid_list_2,
                resid_pca_list_rtu_2,
                dist_2,
                rtu_3_distance,
                rtu_4_distance,
                fault_3,
                fault_4,
            ) = rtu_anomalizers[1].pipeline(
                df_new2, df_trans2, rtu_data_pipeline.scaler2
            )
        if not vav_1_df_new is None:
            (
                actual_list_vav_1,
                pred_list_vav_1,
                resid_list_vav_1,
                resid_pca_list_vav_1,
                dist_vav_1,
            ) = vav_anomalizers[0].pipeline(
                vav_1_df_new, vav_1_df_trans, vav_pipelines[0].scaler
            )

        if not vav_2_df_new is None:
            (
                actual_list_vav_2,
                pred_list_vav_2,
                resid_list_vav_2,
                resid_pca_list_vav_2,
                dist_vav_2,
            ) = vav_anomalizers[1].pipeline(
                vav_2_df_new, vav_2_df_trans, vav_pipelines[1].scaler
            )

        if not vav_3_df_new is None:
            (
                actual_list_vav_3,
                pred_list_vav_3,
                resid_list_vav_3,
                resid_pca_list_vav_3,
                dist_vav_3,
            ) = vav_anomalizers[2].pipeline(
                vav_3_df_new, vav_3_df_trans, vav_pipelines[2].scaler
            )

        if not vav_4_df_new is None:
            (
                actual_list_vav_4,
                pred_list_vav_4,
                resid_list_vav_4,
                resid_pca_list_vav_4,
                dist_vav_4,
            ) = vav_anomalizers[3].pipeline(
                vav_4_df_new, vav_4_df_trans, vav_pipelines[3].scaler
            )

        if resid_pca_list_rtu is not None:
            resid_pca_list_rtu = np.array(resid_pca_list_rtu)
            resid_pca_list_rtu_2 = np.array(resid_pca_list_rtu_2)

        if resid_pca_list_rtu is not None:  # Plot RTU residuals
            with resid_placeholder.container():
                resid_rtu1_placeholder, resid_rtu2_placeholder = st.columns(2)
                with resid_rtu1_placeholder:
                    st.subheader("RTU 1 Residuals")
                    fig = create_residual_plot(
                        resid_pca_list_rtu, rtu_1_distance, rtu_id=1
                    )
                    st.plotly_chart(fig)

                with resid_rtu2_placeholder:
                    st.subheader("RTU 2 Residuals")
                    fig = create_residual_plot(
                        resid_pca_list_rtu, rtu_2_distance, rtu_id=2
                    )
                    st.plotly_chart(fig)

                resid_rtu3_placeholder, resid_rtu4_placeholder = st.columns(2)
                with resid_rtu3_placeholder:
                    st.subheader("RTU 3 Residuals")
                    fig = create_residual_plot(
                        resid_pca_list_rtu, rtu_3_distance, rtu_id=3
                    )
                    st.plotly_chart(fig)

                with resid_rtu4_placeholder:
                    st.subheader("RTU 4 Residuals")
                    fig = create_residual_plot(
                        resid_pca_list_rtu, rtu_4_distance, rtu_id=4
                    )
                    st.plotly_chart(fig)

        if resid_pca_list_vav_1 is not None:  # Plot VAV residuals

            with resid_vav_placeholder.container():
                resid_rtu_1_vav_placeholder, resid_rtu_2_vav_placeholder = st.columns(2)

                with resid_rtu_1_vav_placeholder:
                    st.subheader("VAV 1 Residuals")
                    fig = create_residual_plot(
                        np.array(resid_pca_list_vav_1), rtu_4_distance, rtu_id=1, lim=15
                    )
                    st.plotly_chart(fig)

                with resid_rtu_2_vav_placeholder:
                    st.subheader("VAV 2 Residuals")
                    fig = create_residual_plot(
                        np.array(resid_pca_list_vav_2), rtu_4_distance, rtu_id=1, lim=15
                    )
                    st.plotly_chart(fig)

                resid_rtu_3_vav_placeholder, resid_rtu_4_vav_placeholder = st.columns(2)
                with resid_rtu_3_vav_placeholder:
                    st.subheader("VAV 3 Residuals")
                    fig = create_residual_plot(
                        np.array(resid_pca_list_vav_3), rtu_4_distance, rtu_id=1, lim=15
                    )
                    st.plotly_chart(fig)

                with resid_rtu_4_vav_placeholder:
                    st.subheader("VAV 4 Residuals")
                    fig = create_residual_plot(
                        np.array(resid_pca_list_vav_4), rtu_4_distance, rtu_id=1, lim=15
                    )
                    st.plotly_chart(fig)

        current_time = pd.to_datetime(df_time)

        if energy_df_north is not None:

            energy_prediction_north = energy_prediction_model_north.pipeline(
                energy_df_north, energy_pipeline_north.scaler
            ).flatten()

            x_time = pd.date_range(
                current_time, periods=len(energy_prediction_north), freq="1h"
            )

            with north_wing_energy_container:

                fig = px.line(
                    x=x_time,
                    y=energy_prediction_north,
                    labels={"x": "Time", "y": "Energy (kW)"},
                    height=200,
                )

                st.plotly_chart(fig)

        if energy_df_south is not None:
            energy_prediction_south = energy_prediction_model_south.pipeline(
                energy_df_south, energy_pipeline_south.scaler
            ).flatten()

            x_time = pd.date_range(
                current_time, periods=len(energy_prediction_south), freq="1h"
            )

            with south_wing_energy_container:

                fig = px.line(
                    x=x_time,
                    y=energy_prediction_south,
                    labels={"x": "Time", "y": "Energy (kWh)"},
                    height=200,
                )

                st.plotly_chart(fig)

        update_status_boxes(df, [fault_1, fault_2, fault_3, fault_4])
        fault_table_update(
            [fault_1, fault_2, fault_3, fault_4], df_faults, current_stat, df_time
        )
        mqtt_client.data_list.clear()