File size: 4,614 Bytes
6a833f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\Users\\levim\\anaconda3\\envs\\experiments\\lib\\site-packages\\scipy\\__init__.py:146: UserWarning: A NumPy version >=1.16.5 and <1.23.0 is required for this version of SciPy (detected version 1.24.3\n",
      "  warnings.warn(f\"A NumPy version >={np_minversion} and <{np_maxversion}\"\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd \n",
    "from datetime import datetime \n",
    "from datetime import date\n",
    "import matplotlib.pyplot as plt\n",
    "# import seaborn as sns\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from keras.models import Sequential\n",
    "from keras.layers import LSTM, Dense\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
    "from keras.callbacks import ModelCheckpoint\n",
    "\n",
    "dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
    "\n",
    "### Load ALL data ###\n",
    "all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Load selection of data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\levim\\AppData\\Local\\Temp\\ipykernel_27084\\3547628995.py:5: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n"
     ]
    }
   ],
   "source": [
    "# Prepar energy data set with extended features\n",
    "feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
    "extended_energy_data = all_data[feature_list]\n",
    "\n",
    "extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
    "extended_energy_data.set_index('date', inplace=True)\n",
    "\n",
    "# eed = extended energy data\n",
    "# Resampling back to 15 minutes and 1 hour\n",
    "eed_15m = extended_energy_data.resample('15T').mean()\n",
    "eed_1h = extended_energy_data.resample('60T').mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "vscode": {
     "languageId": "ruby"
    }
   },
   "outputs": [],
   "source": [
    "# Assuming you want to apply a moving average window of size 3 on the 'column_name' column\n",
    "window_size = 12*4 # Half a day\n",
    "eed_15m_avg = eed_15m.copy()\n",
    "eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
    "eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(array([17591., 17652., 17713., 17775., 17836., 17897.]),\n",
       " [Text(17591.0, 0, '2018-03'),\n",
       "  Text(17652.0, 0, '2018-05'),\n",
       "  Text(17713.0, 0, '2018-07'),\n",
       "  Text(17775.0, 0, '2018-09'),\n",
       "  Text(17836.0, 0, '2018-11'),\n",
       "  Text(17897.0, 0, '2019-01')])"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "%matplotlib qt\n",
    "\n",
    "start_date  = '2018-02-02'\n",
    "end_date    = '2019-02-03'\n",
    "\n",
    "plt.plot(eed_15m['hvac_N'].loc[start_date:end_date])\n",
    "plt.plot(eed_15m['moving_average'].loc[start_date:end_date])\n",
    "plt.xticks(rotation=45)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "experiments",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.15"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}