Spaces:
Sleeping
Sleeping
File size: 10,757 Bytes
830ab0c 3b66598 830ab0c 3b66598 be37c76 3b66598 be37c76 3b66598 830ab0c 3b66598 be37c76 3b66598 830ab0c 3b66598 be37c76 3b66598 830ab0c 3b66598 be37c76 3b66598 830ab0c 3b66598 830ab0c 3b66598 830ab0c 3b66598 830ab0c 3b66598 830ab0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import streamlit as st # web development
import numpy as np # np mean, np random
import pandas as pd # read csv, df manipulation
import time # to simulate a real time data, time loop
import plotly.express as px # interactive charts
import paho.mqtt.client as mqtt
import json
import warnings
from tensorflow.keras.models import load_model
import joblib
import plotly.graph_objects as go
warnings.filterwarnings('ignore')
model = load_model(r"src\rtu\models\lstm_4rtu_smooth_02.keras")
scaler = joblib.load(r'src\rtu\models\scaler_1.pkl')
# kmeans = joblib.load('kmeans_model.pkl')
kmeans1 = joblib.load(r'src\rtu\models\kmeans_model1.pkl')
kmeans2 = joblib.load(r'src\rtu\models\kmeans_model2.pkl')
kmeans3 = joblib.load(r'src\rtu\models\kmeans_model3.pkl')
kmeans4 = joblib.load(r'src\rtu\models\kmeans_model4.pkl')
# pca = joblib.load('pca_model.pkl')
st.set_page_config(
page_title = 'Real-Time Data Buliding 59',
page_icon = '✅',
layout = 'wide'
)
st.title("Buliding 59 Dashboard")
placeholder = st.empty()
broker_address = "localhost"
broker_port = 1883
topic = "sensor_data"
df = pd.DataFrame(columns=['hp_hws_temp',
'rtu_003_sa_temp',
'rtu_003_oadmpr_pct',
'rtu_003_ra_temp',
'rtu_003_oa_temp',
'rtu_003_ma_temp',
'rtu_003_sf_vfd_spd_fbk_tn',
'rtu_003_rf_vfd_spd_fbk_tn',
'rtu_004_sa_temp',
'rtu_004_oadmpr_pct',
'rtu_004_ra_temp',
'rtu_004_oa_temp',
'rtu_004_ma_temp',
'rtu_004_sf_vfd_spd_fbk_tn',
'rtu_004_rf_vfd_spd_fbk_tn',
'rtu_001_sa_temp',
'rtu_001_oadmpr_pct',
'rtu_001_ra_temp',
'rtu_001_oa_temp',
'rtu_001_ma_temp',
'rtu_001_sf_vfd_spd_fbk_tn',
'rtu_001_rf_vfd_spd_fbk_tn',
'rtu_002_sa_temp',
'rtu_002_oadmpr_pct',
'rtu_002_ra_temp',
'rtu_002_oa_temp',
'rtu_002_ma_temp',
'rtu_002_sf_vfd_spd_fbk_tn',
'rtu_002_rf_vfd_spd_fbk_tn',
# 'rtu_004_sat_sp_tn',
# 'rtu_003_sat_sp_tn',
# 'rtu_001_sat_sp_tn',
# 'rtu_002_sat_sp_tn',
'air_temp_set_1',
'air_temp_set_2',
'dew_point_temperature_set_1d',
'relative_humidity_set_1',
'solar_radiation_set_1'])
actual_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
pred_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
resid_list = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
distance = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
pca_x = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
pca_y = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
def on_message(client, userdata, message):
global df
payload = json.loads(message.payload.decode())
hp_hws_temp = payload['hp_hws_temp']
rtu_003_sa_temp = payload['rtu_003_sa_temp']
rtu_003_oadmpr_pct = payload['rtu_003_oadmpr_pct']
rtu_003_ra_temp = payload['rtu_003_ra_temp']
rtu_003_oa_temp = payload['rtu_003_oa_temp']
rtu_003_ma_temp = payload['rtu_003_ma_temp']
rtu_003_sf_vfd_spd_fbk_tn = payload['rtu_003_sf_vfd_spd_fbk_tn']
rtu_003_rf_vfd_spd_fbk_tn =payload['rtu_003_rf_vfd_spd_fbk_tn']
rtu_004_sa_temp = payload['rtu_004_sa_temp']
rtu_004_oadmpr_pct = payload['rtu_004_oadmpr_pct']
rtu_004_ra_temp = payload['rtu_004_ra_temp']
rtu_004_oa_temp = payload['rtu_004_oa_temp']
rtu_004_ma_temp = payload['rtu_004_ma_temp']
rtu_004_sf_vfd_spd_fbk_tn = payload['rtu_004_sf_vfd_spd_fbk_tn']
rtu_004_rf_vfd_spd_fbk_tn = payload['rtu_004_rf_vfd_spd_fbk_tn']
rtu_001_sa_temp = payload['rtu_001_sa_temp']
rtu_001_oadmpr_pct = payload['rtu_001_oadmpr_pct']
rtu_001_ra_temp = payload['rtu_001_ra_temp']
rtu_001_oa_temp = payload['rtu_001_oa_temp']
rtu_001_ma_temp = payload['rtu_001_ma_temp']
rtu_001_sf_vfd_spd_fbk_tn = payload['rtu_001_sf_vfd_spd_fbk_tn']
rtu_001_rf_vfd_spd_fbk_tn =payload['rtu_001_rf_vfd_spd_fbk_tn']
rtu_002_sa_temp = payload['rtu_002_sa_temp']
rtu_002_oadmpr_pct = payload['rtu_002_oadmpr_pct']
rtu_002_ra_temp = payload['rtu_002_ra_temp']
rtu_002_oa_temp = payload['rtu_002_oa_temp']
rtu_002_ma_temp = payload['rtu_002_ma_temp']
rtu_002_sf_vfd_spd_fbk_tn = payload['rtu_002_sf_vfd_spd_fbk_tn']
rtu_002_rf_vfd_spd_fbk_tn = payload['rtu_002_rf_vfd_spd_fbk_tn']
# rtu_004_sat_sp_tn = payload['rtu_004_sat_sp_tn']
# rtu_003_sat_sp_tn = payload['rtu_003_sat_sp_tn']
# rtu_001_sat_sp_tn = payload['rtu_001_sat_sp_tn']
# rtu_002_sat_sp_tn = payload['rtu_002_sat_sp_tn']
air_temp_set_1 = payload['air_temp_set_1']
air_temp_set_2 = payload['air_temp_set_2']
dew_point_temperature_set_1d = payload['dew_point_temperature_set_1d']
relative_humidity_set_1 = payload['relative_humidity_set_1']
solar_radiation_set_1 = payload['solar_radiation_set_1']
len_df = len(df)
df.loc[len_df] = {'hp_hws_temp':hp_hws_temp,
'rtu_003_sa_temp':rtu_003_sa_temp,
'rtu_003_oadmpr_pct': rtu_003_oadmpr_pct,
'rtu_003_ra_temp':rtu_003_ra_temp,
'rtu_003_oa_temp': rtu_003_oa_temp,
'rtu_003_ma_temp': rtu_003_ma_temp,
'rtu_003_sf_vfd_spd_fbk_tn': rtu_003_sf_vfd_spd_fbk_tn,
'rtu_003_rf_vfd_spd_fbk_tn':rtu_003_rf_vfd_spd_fbk_tn,
'rtu_004_sa_temp':rtu_004_sa_temp,
'rtu_004_oadmpr_pct':rtu_004_oadmpr_pct,
'rtu_004_ra_temp':rtu_004_ra_temp,
'rtu_004_oa_temp':rtu_004_oa_temp,
'rtu_004_ma_temp':rtu_004_ma_temp,
'rtu_004_sf_vfd_spd_fbk_tn':rtu_004_sf_vfd_spd_fbk_tn,
'rtu_004_rf_vfd_spd_fbk_tn':rtu_004_rf_vfd_spd_fbk_tn,
'rtu_001_sa_temp':rtu_001_sa_temp,
'rtu_001_oadmpr_pct': rtu_001_oadmpr_pct,
'rtu_001_ra_temp':rtu_001_ra_temp,
'rtu_001_oa_temp': rtu_001_oa_temp,
'rtu_001_ma_temp': rtu_001_ma_temp,
'rtu_001_sf_vfd_spd_fbk_tn': rtu_001_sf_vfd_spd_fbk_tn,
'rtu_001_rf_vfd_spd_fbk_tn':rtu_001_rf_vfd_spd_fbk_tn,
'rtu_002_sa_temp':rtu_002_sa_temp,
'rtu_002_oadmpr_pct':rtu_002_oadmpr_pct,
'rtu_002_ra_temp':rtu_002_ra_temp,
'rtu_002_oa_temp':rtu_002_oa_temp,
'rtu_002_ma_temp':rtu_002_ma_temp,
'rtu_002_sf_vfd_spd_fbk_tn':rtu_002_sf_vfd_spd_fbk_tn,
'rtu_002_rf_vfd_spd_fbk_tn':rtu_002_rf_vfd_spd_fbk_tn,
# 'rtu_004_sat_sp_tn':rtu_004_sat_sp_tn,
# 'rtu_003_sat_sp_tn' :rtu_003_sat_sp_tn,
# 'rtu_001_sat_sp_tn':rtu_001_sat_sp_tn,
# 'rtu_002_sat_sp_tn':rtu_002_sat_sp_tn,
'air_temp_set_1':air_temp_set_1,
'air_temp_set_2':air_temp_set_2,
'dew_point_temperature_set_1d':dew_point_temperature_set_1d,
'relative_humidity_set_1':relative_humidity_set_1,
'solar_radiation_set_1':solar_radiation_set_1}
if len_df>30:
df_window = df[len_df-31:len_df]
df_window = df_window.astype('float32')
df_trans = scaler.transform(df_window)
df_new = df_trans[:30,:].reshape((1,30,34))#
pred = model.predict(df_new)
pred_copy = pred.copy()
actual = df_trans[30,:29]#
resid = actual - pred
#---------
pred.resize((pred.shape[0], pred.shape[1] + len(df_trans[30,29:])))#
pred[:, -len(df_trans[30,29:]):] = df_trans[30,29:]#
pred = scaler.inverse_transform(np.array(pred))
actual = scaler.inverse_transform(np.array([df_trans[30,:]]))
#---------
actual_list.pop(0)
pred_list.pop(0)
resid_list.pop(0)
# distance.pop(0)
# pca_x.pop(0)
# pca_y.pop(0)
actual_list.append(actual[0,1])
pred_list.append(pred[0,1])
resid_list.append(resid[0,1])
# distance.append(np.linalg.norm(pred_copy-kmeans.cluster_centers_[0], ord=2, axis = 1))
# dist_color = [1 if num >= 5 else 0 for num in distance]
dist = []
dist.append(np.linalg.norm(resid[:,1:8]-kmeans1.cluster_centers_[0], ord=2, axis = 1))
dist.append(np.linalg.norm(resid[:,8:15]-kmeans2.cluster_centers_[0], ord=2, axis = 1))
dist.append(np.linalg.norm(resid[:,15:22]-kmeans3.cluster_centers_[0], ord=2, axis = 1))
dist.append(np.linalg.norm(resid[:,22:29]-kmeans4.cluster_centers_[0], ord=2, axis = 1))
dist = np.array(dist)
# dist_color = [1 if num >= 2 else 0 for num in dist]
# pca_cord = pca.transform(resid)
# pca_x.append(pca_cord[0,0])
# pca_y.append(pca_cord[0,1])
# clust_center = pca.transform(kmeans.cluster_centers_)
# theta = np.linspace(0, 2*np.pi, 100)
# radius = 2
# x_circle = clust_center[0, 0] + radius * np.cos(theta)
# y_circle = clust_center[0, 1] + radius * np.sin(theta)
ind = np.linspace(1, 30, 30)
with placeholder.container():
col1, fig_col1, fig_col2 = st.columns(3)
with col1:
st.header("RTU Status")
for i in range(4):
rtu = ['RTU 1', 'RTU 2', 'RTU 3', 'RTU 4']
tol = [2,2,2,0.1]#[4.5,4,5,5]
status_icon = "🔧" if dist[i,0] > tol[i] else "🔄"
status = "Damper or Fan issue" if dist[i,0] > tol[i] else "Normal"
status_markdown = f"**{rtu[i]} {status_icon}**\n\nSA Temp: {int(actual[0,1])}°C\nRA Temp: {int(actual[0,3])}°C\n\nStatus: {status}"
st.markdown(status_markdown, unsafe_allow_html=True)
with fig_col1:
# st.markdown("### Fault")
st.header("Fault")
fig1 = go.Figure()
# fig1.add_trace(go.Scatter(x=ind, y=resid_list, mode='lines', name='Actual',line=dict(color='blue')))
# fig1 = px.scatter(x=pca_x, y=pca_y,color=dist_color,color_discrete_map={'1': 'red', '0': 'green'})
# fig1.add_trace(go.Scatter(x=x_circle, y=y_circle, mode='lines',line=dict(color='green')))
colors = ['red' if value > 0.1 else 'blue' for value in dist[:, 0]]
fig1 = fig1.add_trace(go.Bar(x=['RTU 1', 'RTU 2', 'RTU 3', 'RTU 4'],y=dist[:, 0],marker_color=colors,width=0.4))
fig1.update_layout(width=500,height=400 )
st.write(fig1)
with fig_col2:
st.header("Mixed Air temperature")
fig2 = go.Figure()
fig2.add_trace(go.Scatter(x=ind, y=actual_list, mode='lines', name='Actual',line=dict(color='blue')))
fig2.add_trace(go.Scatter(x=ind, y=pred_list, mode='lines', name='Predicted',line=dict(color='red', dash='dot')))
fig2.update_layout(yaxis_range=[50, 80],width=500,height=400 )
st.write(fig2)
st.markdown("### Detailed Data View")
st.dataframe(df[len_df-5:len_df])
# time.sleep(1)
client = mqtt.Client(mqtt.CallbackAPIVersion.VERSION1)
client.on_message = on_message
client.connect(broker_address, broker_port)
client.subscribe(topic)
client.loop_forever()
|