File size: 76,726 Bytes
8935117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd \n",
    "from datetime import datetime \n",
    "from datetime import date\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from keras.models import Sequential\n",
    "from keras.layers import LSTM, Dense\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
    "from keras.callbacks import ModelCheckpoint\n",
    "import tensorflow as tf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "merged = pd.read_csv(r'../data/long_merge.csv')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "ename": "MemoryError",
     "evalue": "Unable to allocate 8.15 GiB for an array with shape (528, 2072154) and data type float64",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mMemoryError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[10], line 23\u001b[0m\n\u001b[0;32m     14\u001b[0m \u001b[38;5;66;03m# for rtu in rtus:\u001b[39;00m\n\u001b[0;32m     15\u001b[0m \u001b[38;5;66;03m#     for column in merged.columns:\u001b[39;00m\n\u001b[0;32m     16\u001b[0m \u001b[38;5;66;03m#         if f\"rtu_00{rtu}_fltrd_sa\" in column:\u001b[39;00m\n\u001b[0;32m     17\u001b[0m \u001b[38;5;66;03m#                 cols.append(column)\u001b[39;00m\n\u001b[0;32m     18\u001b[0m cols \u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdate\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m+\u001b[39m cols \u001b[38;5;241m+\u001b[39m [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mair_temp_set_1\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m     19\u001b[0m  \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mair_temp_set_2\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m     20\u001b[0m  \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdew_point_temperature_set_1d\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m     21\u001b[0m  \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrelative_humidity_set_1\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m     22\u001b[0m  \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msolar_radiation_set_1\u001b[39m\u001b[38;5;124m'\u001b[39m]\n\u001b[1;32m---> 23\u001b[0m input_dataset \u001b[38;5;241m=\u001b[39m \u001b[43mmerged\u001b[49m\u001b[43m[\u001b[49m\u001b[43mcols\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m     24\u001b[0m input_dataset\u001b[38;5;241m.\u001b[39mcolumns\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\frame.py:4105\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m   4102\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(indexer, \u001b[38;5;28mslice\u001b[39m):\n\u001b[0;32m   4103\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_slice(indexer, axis\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m-> 4105\u001b[0m data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_with_is_copy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4107\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_single_key:\n\u001b[0;32m   4108\u001b[0m     \u001b[38;5;66;03m# What does looking for a single key in a non-unique index return?\u001b[39;00m\n\u001b[0;32m   4109\u001b[0m     \u001b[38;5;66;03m# The behavior is inconsistent. It returns a Series, except when\u001b[39;00m\n\u001b[0;32m   4110\u001b[0m     \u001b[38;5;66;03m# - the key itself is repeated (test on data.shape, #9519), or\u001b[39;00m\n\u001b[0;32m   4111\u001b[0m     \u001b[38;5;66;03m# - we have a MultiIndex on columns (test on self.columns, #21309)\u001b[39;00m\n\u001b[0;32m   4112\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m data\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcolumns, MultiIndex):\n\u001b[0;32m   4113\u001b[0m         \u001b[38;5;66;03m# GH#26490 using data[key] can cause RecursionError\u001b[39;00m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\generic.py:4150\u001b[0m, in \u001b[0;36mNDFrame._take_with_is_copy\u001b[1;34m(self, indices, axis)\u001b[0m\n\u001b[0;32m   4139\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m   4140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_with_is_copy\u001b[39m(\u001b[38;5;28mself\u001b[39m, indices, axis: Axis \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Self:\n\u001b[0;32m   4141\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m   4142\u001b[0m \u001b[38;5;124;03m    Internal version of the `take` method that sets the `_is_copy`\u001b[39;00m\n\u001b[0;32m   4143\u001b[0m \u001b[38;5;124;03m    attribute to keep track of the parent dataframe (using in indexing\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   4148\u001b[0m \u001b[38;5;124;03m    See the docstring of `take` for full explanation of the parameters.\u001b[39;00m\n\u001b[0;32m   4149\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[1;32m-> 4150\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindices\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4151\u001b[0m     \u001b[38;5;66;03m# Maybe set copy if we didn't actually change the index.\u001b[39;00m\n\u001b[0;32m   4152\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m result\u001b[38;5;241m.\u001b[39m_get_axis(axis)\u001b[38;5;241m.\u001b[39mequals(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_axis(axis)):\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\generic.py:4130\u001b[0m, in \u001b[0;36mNDFrame.take\u001b[1;34m(self, indices, axis, **kwargs)\u001b[0m\n\u001b[0;32m   4125\u001b[0m     \u001b[38;5;66;03m# We can get here with a slice via DataFrame.__getitem__\u001b[39;00m\n\u001b[0;32m   4126\u001b[0m     indices \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marange(\n\u001b[0;32m   4127\u001b[0m         indices\u001b[38;5;241m.\u001b[39mstart, indices\u001b[38;5;241m.\u001b[39mstop, indices\u001b[38;5;241m.\u001b[39mstep, dtype\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mintp\n\u001b[0;32m   4128\u001b[0m     )\n\u001b[1;32m-> 4130\u001b[0m new_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   4131\u001b[0m \u001b[43m    \u001b[49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4132\u001b[0m \u001b[43m    \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_block_manager_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4133\u001b[0m \u001b[43m    \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m   4134\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4135\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_constructor_from_mgr(new_data, axes\u001b[38;5;241m=\u001b[39mnew_data\u001b[38;5;241m.\u001b[39maxes)\u001b[38;5;241m.\u001b[39m__finalize__(\n\u001b[0;32m   4136\u001b[0m     \u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtake\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   4137\u001b[0m )\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:894\u001b[0m, in \u001b[0;36mBaseBlockManager.take\u001b[1;34m(self, indexer, axis, verify)\u001b[0m\n\u001b[0;32m    891\u001b[0m indexer \u001b[38;5;241m=\u001b[39m maybe_convert_indices(indexer, n, verify\u001b[38;5;241m=\u001b[39mverify)\n\u001b[0;32m    893\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes[axis]\u001b[38;5;241m.\u001b[39mtake(indexer)\n\u001b[1;32m--> 894\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreindex_indexer\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    895\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnew_axis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    896\u001b[0m \u001b[43m    \u001b[49m\u001b[43mindexer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    897\u001b[0m \u001b[43m    \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    898\u001b[0m \u001b[43m    \u001b[49m\u001b[43mallow_dups\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m    899\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m    900\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:680\u001b[0m, in \u001b[0;36mBaseBlockManager.reindex_indexer\u001b[1;34m(self, new_axis, indexer, axis, fill_value, allow_dups, copy, only_slice, use_na_proxy)\u001b[0m\n\u001b[0;32m    677\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mIndexError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRequested axis not found in manager\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    679\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m:\n\u001b[1;32m--> 680\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_slice_take_blocks_ax0\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    681\u001b[0m \u001b[43m        \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    682\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    683\u001b[0m \u001b[43m        \u001b[49m\u001b[43monly_slice\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43monly_slice\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    684\u001b[0m \u001b[43m        \u001b[49m\u001b[43muse_na_proxy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43muse_na_proxy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    685\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    686\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m    687\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m    688\u001b[0m         blk\u001b[38;5;241m.\u001b[39mtake_nd(\n\u001b[0;32m    689\u001b[0m             indexer,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    695\u001b[0m         \u001b[38;5;28;01mfor\u001b[39;00m blk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocks\n\u001b[0;32m    696\u001b[0m     ]\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:843\u001b[0m, in \u001b[0;36mBaseBlockManager._slice_take_blocks_ax0\u001b[1;34m(self, slice_or_indexer, fill_value, only_slice, use_na_proxy, ref_inplace_op)\u001b[0m\n\u001b[0;32m    841\u001b[0m                     blocks\u001b[38;5;241m.\u001b[39mappend(nb)\n\u001b[0;32m    842\u001b[0m             \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 843\u001b[0m                 nb \u001b[38;5;241m=\u001b[39m \u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake_nd\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtaker\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnew_mgr_locs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmgr_locs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    844\u001b[0m                 blocks\u001b[38;5;241m.\u001b[39mappend(nb)\n\u001b[0;32m    846\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m blocks\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\blocks.py:1307\u001b[0m, in \u001b[0;36mBlock.take_nd\u001b[1;34m(self, indexer, axis, new_mgr_locs, fill_value)\u001b[0m\n\u001b[0;32m   1304\u001b[0m     allow_fill \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m   1306\u001b[0m \u001b[38;5;66;03m# Note: algos.take_nd has upcast logic similar to coerce_to_target_dtype\u001b[39;00m\n\u001b[1;32m-> 1307\u001b[0m new_values \u001b[38;5;241m=\u001b[39m \u001b[43malgos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake_nd\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1308\u001b[0m \u001b[43m    \u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_fill\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_fill\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfill_value\u001b[49m\n\u001b[0;32m   1309\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1311\u001b[0m \u001b[38;5;66;03m# Called from three places in managers, all of which satisfy\u001b[39;00m\n\u001b[0;32m   1312\u001b[0m \u001b[38;5;66;03m#  these assertions\u001b[39;00m\n\u001b[0;32m   1313\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m, ExtensionBlock):\n\u001b[0;32m   1314\u001b[0m     \u001b[38;5;66;03m# NB: in this case, the 'axis' kwarg will be ignored in the\u001b[39;00m\n\u001b[0;32m   1315\u001b[0m     \u001b[38;5;66;03m#  algos.take_nd call above.\u001b[39;00m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\array_algos\\take.py:117\u001b[0m, in \u001b[0;36mtake_nd\u001b[1;34m(arr, indexer, axis, fill_value, allow_fill)\u001b[0m\n\u001b[0;32m    114\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mtake(indexer, fill_value\u001b[38;5;241m=\u001b[39mfill_value, allow_fill\u001b[38;5;241m=\u001b[39mallow_fill)\n\u001b[0;32m    116\u001b[0m arr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39masarray(arr)\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_take_nd_ndarray\u001b[49m\u001b[43m(\u001b[49m\u001b[43marr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_fill\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\array_algos\\take.py:157\u001b[0m, in \u001b[0;36m_take_nd_ndarray\u001b[1;34m(arr, indexer, axis, fill_value, allow_fill)\u001b[0m\n\u001b[0;32m    155\u001b[0m     out \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mempty(out_shape, dtype\u001b[38;5;241m=\u001b[39mdtype, order\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mF\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    156\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 157\u001b[0m     out \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mempty(out_shape, dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[0;32m    159\u001b[0m func \u001b[38;5;241m=\u001b[39m _get_take_nd_function(\n\u001b[0;32m    160\u001b[0m     arr\u001b[38;5;241m.\u001b[39mndim, arr\u001b[38;5;241m.\u001b[39mdtype, out\u001b[38;5;241m.\u001b[39mdtype, axis\u001b[38;5;241m=\u001b[39maxis, mask_info\u001b[38;5;241m=\u001b[39mmask_info\n\u001b[0;32m    161\u001b[0m )\n\u001b[0;32m    162\u001b[0m func(arr, indexer, out, fill_value)\n",
      "\u001b[1;31mMemoryError\u001b[0m: Unable to allocate 8.15 GiB for an array with shape (528, 2072154) and data type float64"
     ]
    }
   ],
   "source": [
    "zones = [69, 68,67, 66,65.64, 42,41,40,39,38,37,36]\n",
    "rtus = [1]\n",
    "cols = []\n",
    "\n",
    "for zone in zones:\n",
    "        for column in merged.columns:\n",
    "            if f\"zone_0{zone}\" in column and 'co2' not in column and \"hw_valve\" not in column and \"cooling_sp\" not in column and \"heating_sp\" not in column:\n",
    "                cols.append(column)\n",
    "\n",
    "for zone in zones:\n",
    "        for column in merged.columns:\n",
    "              if f\"zone_0{zone}\" in column and \"cooling_sp\" in column or \"heating_sp\" in column:\n",
    "                cols.append(column)\n",
    "# for rtu in rtus:\n",
    "#     for column in merged.columns:\n",
    "#         if f\"rtu_00{rtu}_fltrd_sa\" in column:\n",
    "#                 cols.append(column)\n",
    "cols =['date'] + cols + ['air_temp_set_1',\n",
    " 'air_temp_set_2',\n",
    " 'dew_point_temperature_set_1d',\n",
    " 'relative_humidity_set_1',\n",
    " 'solar_radiation_set_1']\n",
    "input_dataset = merged[cols]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\arbal\\AppData\\Local\\Temp\\ipykernel_32464\\216607548.py:1: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  input_dataset['date'] = pd.to_datetime(input_dataset['date'], format = \"%Y-%m-%d %H:%M:%S\")\n"
     ]
    },
    {
     "ename": "MemoryError",
     "evalue": "Unable to allocate 8.15 GiB for an array with shape (528, 2070713) and data type float64",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mMemoryError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[11], line 2\u001b[0m\n\u001b[0;32m      1\u001b[0m input_dataset[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdate\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mto_datetime(input_dataset[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mdate\u001b[39m\u001b[38;5;124m'\u001b[39m], \u001b[38;5;28mformat\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mY-\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mm-\u001b[39m\u001b[38;5;132;01m%d\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mH:\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mM:\u001b[39m\u001b[38;5;124m%\u001b[39m\u001b[38;5;124mS\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m----> 2\u001b[0m df_filtered \u001b[38;5;241m=\u001b[39m \u001b[43minput_dataset\u001b[49m\u001b[43m[\u001b[49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m>\u001b[39;49m\u001b[43mdate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m2018\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m&\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdt\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate\u001b[49m\u001b[38;5;241;43m<\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mdate\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m2021\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m      4\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m df_filtered\u001b[38;5;241m.\u001b[39misna()\u001b[38;5;241m.\u001b[39many()\u001b[38;5;241m.\u001b[39many():\n\u001b[0;32m      5\u001b[0m     \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mThere are NA values in the DataFrame columns.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\frame.py:4081\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m   4079\u001b[0m \u001b[38;5;66;03m# Do we have a (boolean) 1d indexer?\u001b[39;00m\n\u001b[0;32m   4080\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m com\u001b[38;5;241m.\u001b[39mis_bool_indexer(key):\n\u001b[1;32m-> 4081\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_getitem_bool_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4083\u001b[0m \u001b[38;5;66;03m# We are left with two options: a single key, and a collection of keys,\u001b[39;00m\n\u001b[0;32m   4084\u001b[0m \u001b[38;5;66;03m# We interpret tuples as collections only for non-MultiIndex\u001b[39;00m\n\u001b[0;32m   4085\u001b[0m is_single_key \u001b[38;5;241m=\u001b[39m \u001b[38;5;28misinstance\u001b[39m(key, \u001b[38;5;28mtuple\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_list_like(key)\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\frame.py:4143\u001b[0m, in \u001b[0;36mDataFrame._getitem_bool_array\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m   4140\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcopy(deep\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[0;32m   4142\u001b[0m indexer \u001b[38;5;241m=\u001b[39m key\u001b[38;5;241m.\u001b[39mnonzero()[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m-> 4143\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_take_with_is_copy\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\generic.py:4150\u001b[0m, in \u001b[0;36mNDFrame._take_with_is_copy\u001b[1;34m(self, indices, axis)\u001b[0m\n\u001b[0;32m   4139\u001b[0m \u001b[38;5;129m@final\u001b[39m\n\u001b[0;32m   4140\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_take_with_is_copy\u001b[39m(\u001b[38;5;28mself\u001b[39m, indices, axis: Axis \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Self:\n\u001b[0;32m   4141\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[0;32m   4142\u001b[0m \u001b[38;5;124;03m    Internal version of the `take` method that sets the `_is_copy`\u001b[39;00m\n\u001b[0;32m   4143\u001b[0m \u001b[38;5;124;03m    attribute to keep track of the parent dataframe (using in indexing\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m   4148\u001b[0m \u001b[38;5;124;03m    See the docstring of `take` for full explanation of the parameters.\u001b[39;00m\n\u001b[0;32m   4149\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[1;32m-> 4150\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindices\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4151\u001b[0m     \u001b[38;5;66;03m# Maybe set copy if we didn't actually change the index.\u001b[39;00m\n\u001b[0;32m   4152\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m result\u001b[38;5;241m.\u001b[39m_get_axis(axis)\u001b[38;5;241m.\u001b[39mequals(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_get_axis(axis)):\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\generic.py:4130\u001b[0m, in \u001b[0;36mNDFrame.take\u001b[1;34m(self, indices, axis, **kwargs)\u001b[0m\n\u001b[0;32m   4125\u001b[0m     \u001b[38;5;66;03m# We can get here with a slice via DataFrame.__getitem__\u001b[39;00m\n\u001b[0;32m   4126\u001b[0m     indices \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39marange(\n\u001b[0;32m   4127\u001b[0m         indices\u001b[38;5;241m.\u001b[39mstart, indices\u001b[38;5;241m.\u001b[39mstop, indices\u001b[38;5;241m.\u001b[39mstep, dtype\u001b[38;5;241m=\u001b[39mnp\u001b[38;5;241m.\u001b[39mintp\n\u001b[0;32m   4128\u001b[0m     )\n\u001b[1;32m-> 4130\u001b[0m new_data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_mgr\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   4131\u001b[0m \u001b[43m    \u001b[49m\u001b[43mindices\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4132\u001b[0m \u001b[43m    \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_get_block_manager_axis\u001b[49m\u001b[43m(\u001b[49m\u001b[43maxis\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m   4133\u001b[0m \u001b[43m    \u001b[49m\u001b[43mverify\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m   4134\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   4135\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_constructor_from_mgr(new_data, axes\u001b[38;5;241m=\u001b[39mnew_data\u001b[38;5;241m.\u001b[39maxes)\u001b[38;5;241m.\u001b[39m__finalize__(\n\u001b[0;32m   4136\u001b[0m     \u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtake\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m   4137\u001b[0m )\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:894\u001b[0m, in \u001b[0;36mBaseBlockManager.take\u001b[1;34m(self, indexer, axis, verify)\u001b[0m\n\u001b[0;32m    891\u001b[0m indexer \u001b[38;5;241m=\u001b[39m maybe_convert_indices(indexer, n, verify\u001b[38;5;241m=\u001b[39mverify)\n\u001b[0;32m    893\u001b[0m new_labels \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes[axis]\u001b[38;5;241m.\u001b[39mtake(indexer)\n\u001b[1;32m--> 894\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mreindex_indexer\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    895\u001b[0m \u001b[43m    \u001b[49m\u001b[43mnew_axis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mnew_labels\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    896\u001b[0m \u001b[43m    \u001b[49m\u001b[43mindexer\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    897\u001b[0m \u001b[43m    \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    898\u001b[0m \u001b[43m    \u001b[49m\u001b[43mallow_dups\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m    899\u001b[0m \u001b[43m    \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[0;32m    900\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:687\u001b[0m, in \u001b[0;36mBaseBlockManager.reindex_indexer\u001b[1;34m(self, new_axis, indexer, axis, fill_value, allow_dups, copy, only_slice, use_na_proxy)\u001b[0m\n\u001b[0;32m    680\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_slice_take_blocks_ax0(\n\u001b[0;32m    681\u001b[0m         indexer,\n\u001b[0;32m    682\u001b[0m         fill_value\u001b[38;5;241m=\u001b[39mfill_value,\n\u001b[0;32m    683\u001b[0m         only_slice\u001b[38;5;241m=\u001b[39monly_slice,\n\u001b[0;32m    684\u001b[0m         use_na_proxy\u001b[38;5;241m=\u001b[39muse_na_proxy,\n\u001b[0;32m    685\u001b[0m     )\n\u001b[0;32m    686\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 687\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m \u001b[43m[\u001b[49m\n\u001b[0;32m    688\u001b[0m \u001b[43m        \u001b[49m\u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake_nd\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    689\u001b[0m \u001b[43m            \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    690\u001b[0m \u001b[43m            \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m    691\u001b[0m \u001b[43m            \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[0;32m    692\u001b[0m \u001b[43m                \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfill_value\u001b[49m\n\u001b[0;32m    693\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    694\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    695\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mblk\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mblocks\u001b[49m\n\u001b[0;32m    696\u001b[0m \u001b[43m    \u001b[49m\u001b[43m]\u001b[49m\n\u001b[0;32m    698\u001b[0m new_axes \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes)\n\u001b[0;32m    699\u001b[0m new_axes[axis] \u001b[38;5;241m=\u001b[39m new_axis\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\managers.py:688\u001b[0m, in \u001b[0;36m<listcomp>\u001b[1;34m(.0)\u001b[0m\n\u001b[0;32m    680\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_slice_take_blocks_ax0(\n\u001b[0;32m    681\u001b[0m         indexer,\n\u001b[0;32m    682\u001b[0m         fill_value\u001b[38;5;241m=\u001b[39mfill_value,\n\u001b[0;32m    683\u001b[0m         only_slice\u001b[38;5;241m=\u001b[39monly_slice,\n\u001b[0;32m    684\u001b[0m         use_na_proxy\u001b[38;5;241m=\u001b[39muse_na_proxy,\n\u001b[0;32m    685\u001b[0m     )\n\u001b[0;32m    686\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m    687\u001b[0m     new_blocks \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m--> 688\u001b[0m         \u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake_nd\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m    689\u001b[0m \u001b[43m            \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    690\u001b[0m \u001b[43m            \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m    691\u001b[0m \u001b[43m            \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[0;32m    692\u001b[0m \u001b[43m                \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mif\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mis\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43;01melse\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mblk\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfill_value\u001b[49m\n\u001b[0;32m    693\u001b[0m \u001b[43m            \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m    694\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m    695\u001b[0m         \u001b[38;5;28;01mfor\u001b[39;00m blk \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mblocks\n\u001b[0;32m    696\u001b[0m     ]\n\u001b[0;32m    698\u001b[0m new_axes \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes)\n\u001b[0;32m    699\u001b[0m new_axes[axis] \u001b[38;5;241m=\u001b[39m new_axis\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\internals\\blocks.py:1307\u001b[0m, in \u001b[0;36mBlock.take_nd\u001b[1;34m(self, indexer, axis, new_mgr_locs, fill_value)\u001b[0m\n\u001b[0;32m   1304\u001b[0m     allow_fill \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[0;32m   1306\u001b[0m \u001b[38;5;66;03m# Note: algos.take_nd has upcast logic similar to coerce_to_target_dtype\u001b[39;00m\n\u001b[1;32m-> 1307\u001b[0m new_values \u001b[38;5;241m=\u001b[39m \u001b[43malgos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtake_nd\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m   1308\u001b[0m \u001b[43m    \u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_fill\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_fill\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfill_value\u001b[49m\n\u001b[0;32m   1309\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m   1311\u001b[0m \u001b[38;5;66;03m# Called from three places in managers, all of which satisfy\u001b[39;00m\n\u001b[0;32m   1312\u001b[0m \u001b[38;5;66;03m#  these assertions\u001b[39;00m\n\u001b[0;32m   1313\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(\u001b[38;5;28mself\u001b[39m, ExtensionBlock):\n\u001b[0;32m   1314\u001b[0m     \u001b[38;5;66;03m# NB: in this case, the 'axis' kwarg will be ignored in the\u001b[39;00m\n\u001b[0;32m   1315\u001b[0m     \u001b[38;5;66;03m#  algos.take_nd call above.\u001b[39;00m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\array_algos\\take.py:117\u001b[0m, in \u001b[0;36mtake_nd\u001b[1;34m(arr, indexer, axis, fill_value, allow_fill)\u001b[0m\n\u001b[0;32m    114\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mtake(indexer, fill_value\u001b[38;5;241m=\u001b[39mfill_value, allow_fill\u001b[38;5;241m=\u001b[39mallow_fill)\n\u001b[0;32m    116\u001b[0m arr \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39masarray(arr)\n\u001b[1;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_take_nd_ndarray\u001b[49m\u001b[43m(\u001b[49m\u001b[43marr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindexer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_fill\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[1;32md:\\Programs\\minconda3\\envs\\smartbuildings\\Lib\\site-packages\\pandas\\core\\array_algos\\take.py:157\u001b[0m, in \u001b[0;36m_take_nd_ndarray\u001b[1;34m(arr, indexer, axis, fill_value, allow_fill)\u001b[0m\n\u001b[0;32m    155\u001b[0m     out \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mempty(out_shape, dtype\u001b[38;5;241m=\u001b[39mdtype, order\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mF\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m    156\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m--> 157\u001b[0m     out \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mempty(out_shape, dtype\u001b[38;5;241m=\u001b[39mdtype)\n\u001b[0;32m    159\u001b[0m func \u001b[38;5;241m=\u001b[39m _get_take_nd_function(\n\u001b[0;32m    160\u001b[0m     arr\u001b[38;5;241m.\u001b[39mndim, arr\u001b[38;5;241m.\u001b[39mdtype, out\u001b[38;5;241m.\u001b[39mdtype, axis\u001b[38;5;241m=\u001b[39maxis, mask_info\u001b[38;5;241m=\u001b[39mmask_info\n\u001b[0;32m    161\u001b[0m )\n\u001b[0;32m    162\u001b[0m func(arr, indexer, out, fill_value)\n",
      "\u001b[1;31mMemoryError\u001b[0m: Unable to allocate 8.15 GiB for an array with shape (528, 2070713) and data type float64"
     ]
    }
   ],
   "source": [
    "input_dataset['date'] = pd.to_datetime(input_dataset['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
    "df_filtered = input_dataset[ (input_dataset.date.dt.date >date(2019, 1, 1)) & (input_dataset.date.dt.date< date(2021, 1, 1))]\n",
    "\n",
    "if df_filtered.isna().any().any():\n",
    "    print(\"There are NA values in the DataFrame columns.\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>date</th>\n",
       "      <th>zone_069_temp</th>\n",
       "      <th>zone_069_fan_spd</th>\n",
       "      <th>zone_068_temp</th>\n",
       "      <th>zone_068_fan_spd</th>\n",
       "      <th>zone_067_temp</th>\n",
       "      <th>zone_067_fan_spd</th>\n",
       "      <th>zone_066_temp</th>\n",
       "      <th>zone_066_fan_spd</th>\n",
       "      <th>zone_042_temp</th>\n",
       "      <th>...</th>\n",
       "      <th>zone_066_heating_sp</th>\n",
       "      <th>zone_067_heating_sp</th>\n",
       "      <th>zone_069_heating_sp</th>\n",
       "      <th>zone_070_heating_sp</th>\n",
       "      <th>zone_071_heating_sp</th>\n",
       "      <th>air_temp_set_1</th>\n",
       "      <th>air_temp_set_2</th>\n",
       "      <th>dew_point_temperature_set_1d</th>\n",
       "      <th>relative_humidity_set_1</th>\n",
       "      <th>solar_radiation_set_1</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1440</th>\n",
       "      <td>2018-01-02 00:00:00</td>\n",
       "      <td>71.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>73.2</td>\n",
       "      <td>70.0</td>\n",
       "      <td>71.2</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.6</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>15.280</td>\n",
       "      <td>15.100</td>\n",
       "      <td>6.33</td>\n",
       "      <td>55.40</td>\n",
       "      <td>161.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1441</th>\n",
       "      <td>2018-01-02 00:01:00</td>\n",
       "      <td>71.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>73.2</td>\n",
       "      <td>70.0</td>\n",
       "      <td>71.2</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.6</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>15.280</td>\n",
       "      <td>15.100</td>\n",
       "      <td>6.33</td>\n",
       "      <td>55.40</td>\n",
       "      <td>161.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1442</th>\n",
       "      <td>2018-01-02 00:02:00</td>\n",
       "      <td>71.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>73.2</td>\n",
       "      <td>70.0</td>\n",
       "      <td>71.2</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.6</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>15.280</td>\n",
       "      <td>15.100</td>\n",
       "      <td>6.33</td>\n",
       "      <td>55.40</td>\n",
       "      <td>161.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1443</th>\n",
       "      <td>2018-01-02 00:03:00</td>\n",
       "      <td>71.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>73.2</td>\n",
       "      <td>70.0</td>\n",
       "      <td>71.2</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.6</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>15.280</td>\n",
       "      <td>15.100</td>\n",
       "      <td>6.33</td>\n",
       "      <td>55.40</td>\n",
       "      <td>161.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1444</th>\n",
       "      <td>2018-01-02 00:04:00</td>\n",
       "      <td>71.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>73.2</td>\n",
       "      <td>70.0</td>\n",
       "      <td>71.2</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.6</td>\n",
       "      <td>...</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>15.280</td>\n",
       "      <td>15.100</td>\n",
       "      <td>6.33</td>\n",
       "      <td>55.40</td>\n",
       "      <td>161.9</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2072148</th>\n",
       "      <td>2020-12-31 23:57:00</td>\n",
       "      <td>68.8</td>\n",
       "      <td>20.0</td>\n",
       "      <td>71.7</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>68.6</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.4</td>\n",
       "      <td>...</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>67.0</td>\n",
       "      <td>13.994</td>\n",
       "      <td>13.528</td>\n",
       "      <td>4.11</td>\n",
       "      <td>51.61</td>\n",
       "      <td>188.8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2072149</th>\n",
       "      <td>2020-12-31 23:58:00</td>\n",
       "      <td>68.8</td>\n",
       "      <td>20.0</td>\n",
       "      <td>71.7</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>68.6</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.4</td>\n",
       "      <td>...</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>67.0</td>\n",
       "      <td>13.994</td>\n",
       "      <td>13.528</td>\n",
       "      <td>4.11</td>\n",
       "      <td>51.61</td>\n",
       "      <td>188.8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2072150</th>\n",
       "      <td>2020-12-31 23:58:00</td>\n",
       "      <td>68.8</td>\n",
       "      <td>20.0</td>\n",
       "      <td>71.7</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>68.6</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.4</td>\n",
       "      <td>...</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>67.0</td>\n",
       "      <td>13.994</td>\n",
       "      <td>13.528</td>\n",
       "      <td>4.11</td>\n",
       "      <td>51.61</td>\n",
       "      <td>188.8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2072151</th>\n",
       "      <td>2020-12-31 23:59:00</td>\n",
       "      <td>68.8</td>\n",
       "      <td>20.0</td>\n",
       "      <td>71.7</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>68.6</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.4</td>\n",
       "      <td>...</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>67.0</td>\n",
       "      <td>13.994</td>\n",
       "      <td>13.528</td>\n",
       "      <td>4.11</td>\n",
       "      <td>51.61</td>\n",
       "      <td>188.8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2072152</th>\n",
       "      <td>2020-12-31 23:59:00</td>\n",
       "      <td>68.8</td>\n",
       "      <td>20.0</td>\n",
       "      <td>71.7</td>\n",
       "      <td>20.0</td>\n",
       "      <td>70.4</td>\n",
       "      <td>20.0</td>\n",
       "      <td>68.6</td>\n",
       "      <td>35.0</td>\n",
       "      <td>71.4</td>\n",
       "      <td>...</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>68.0</td>\n",
       "      <td>65.0</td>\n",
       "      <td>67.0</td>\n",
       "      <td>13.994</td>\n",
       "      <td>13.528</td>\n",
       "      <td>4.11</td>\n",
       "      <td>51.61</td>\n",
       "      <td>188.8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>2070713 rows × 529 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                       date  zone_069_temp  zone_069_fan_spd  zone_068_temp  \\\n",
       "1440    2018-01-02 00:00:00           71.4              20.0           73.2   \n",
       "1441    2018-01-02 00:01:00           71.4              20.0           73.2   \n",
       "1442    2018-01-02 00:02:00           71.4              20.0           73.2   \n",
       "1443    2018-01-02 00:03:00           71.4              20.0           73.2   \n",
       "1444    2018-01-02 00:04:00           71.4              20.0           73.2   \n",
       "...                     ...            ...               ...            ...   \n",
       "2072148 2020-12-31 23:57:00           68.8              20.0           71.7   \n",
       "2072149 2020-12-31 23:58:00           68.8              20.0           71.7   \n",
       "2072150 2020-12-31 23:58:00           68.8              20.0           71.7   \n",
       "2072151 2020-12-31 23:59:00           68.8              20.0           71.7   \n",
       "2072152 2020-12-31 23:59:00           68.8              20.0           71.7   \n",
       "\n",
       "         zone_068_fan_spd  zone_067_temp  zone_067_fan_spd  zone_066_temp  \\\n",
       "1440                 70.0           71.2              20.0           70.4   \n",
       "1441                 70.0           71.2              20.0           70.4   \n",
       "1442                 70.0           71.2              20.0           70.4   \n",
       "1443                 70.0           71.2              20.0           70.4   \n",
       "1444                 70.0           71.2              20.0           70.4   \n",
       "...                   ...            ...               ...            ...   \n",
       "2072148              20.0           70.4              20.0           68.6   \n",
       "2072149              20.0           70.4              20.0           68.6   \n",
       "2072150              20.0           70.4              20.0           68.6   \n",
       "2072151              20.0           70.4              20.0           68.6   \n",
       "2072152              20.0           70.4              20.0           68.6   \n",
       "\n",
       "         zone_066_fan_spd  zone_042_temp  ...  zone_066_heating_sp  \\\n",
       "1440                 35.0           71.6  ...                  NaN   \n",
       "1441                 35.0           71.6  ...                  NaN   \n",
       "1442                 35.0           71.6  ...                  NaN   \n",
       "1443                 35.0           71.6  ...                  NaN   \n",
       "1444                 35.0           71.6  ...                  NaN   \n",
       "...                   ...            ...  ...                  ...   \n",
       "2072148              35.0           71.4  ...                 68.0   \n",
       "2072149              35.0           71.4  ...                 68.0   \n",
       "2072150              35.0           71.4  ...                 68.0   \n",
       "2072151              35.0           71.4  ...                 68.0   \n",
       "2072152              35.0           71.4  ...                 68.0   \n",
       "\n",
       "         zone_067_heating_sp  zone_069_heating_sp  zone_070_heating_sp  \\\n",
       "1440                     NaN                  NaN                  NaN   \n",
       "1441                     NaN                  NaN                  NaN   \n",
       "1442                     NaN                  NaN                  NaN   \n",
       "1443                     NaN                  NaN                  NaN   \n",
       "1444                     NaN                  NaN                  NaN   \n",
       "...                      ...                  ...                  ...   \n",
       "2072148                 68.0                 68.0                 65.0   \n",
       "2072149                 68.0                 68.0                 65.0   \n",
       "2072150                 68.0                 68.0                 65.0   \n",
       "2072151                 68.0                 68.0                 65.0   \n",
       "2072152                 68.0                 68.0                 65.0   \n",
       "\n",
       "         zone_071_heating_sp  air_temp_set_1  air_temp_set_2  \\\n",
       "1440                     NaN          15.280          15.100   \n",
       "1441                     NaN          15.280          15.100   \n",
       "1442                     NaN          15.280          15.100   \n",
       "1443                     NaN          15.280          15.100   \n",
       "1444                     NaN          15.280          15.100   \n",
       "...                      ...             ...             ...   \n",
       "2072148                 67.0          13.994          13.528   \n",
       "2072149                 67.0          13.994          13.528   \n",
       "2072150                 67.0          13.994          13.528   \n",
       "2072151                 67.0          13.994          13.528   \n",
       "2072152                 67.0          13.994          13.528   \n",
       "\n",
       "         dew_point_temperature_set_1d  relative_humidity_set_1  \\\n",
       "1440                             6.33                    55.40   \n",
       "1441                             6.33                    55.40   \n",
       "1442                             6.33                    55.40   \n",
       "1443                             6.33                    55.40   \n",
       "1444                             6.33                    55.40   \n",
       "...                               ...                      ...   \n",
       "2072148                          4.11                    51.61   \n",
       "2072149                          4.11                    51.61   \n",
       "2072150                          4.11                    51.61   \n",
       "2072151                          4.11                    51.61   \n",
       "2072152                          4.11                    51.61   \n",
       "\n",
       "         solar_radiation_set_1  \n",
       "1440                     161.9  \n",
       "1441                     161.9  \n",
       "1442                     161.9  \n",
       "1443                     161.9  \n",
       "1444                     161.9  \n",
       "...                        ...  \n",
       "2072148                  188.8  \n",
       "2072149                  188.8  \n",
       "2072150                  188.8  \n",
       "2072151                  188.8  \n",
       "2072152                  188.8  \n",
       "\n",
       "[2070713 rows x 529 columns]"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df_filtered"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp',\n",
       " 'zone_070_heating_sp']"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "testdataset_df = df_filtered[(df_filtered.date.dt.date >date(2019, 5, 1)) & (df_filtered.date.dt.date <date(2019,7, 1))]\n",
    "\n",
    "# traindataset_df = df_filtered[ (df_filtered.date.dt.date >date(2019, 11, 8))]\n",
    "\n",
    "traindataset_df = df_filtered[(df_filtered.date.dt.date >date(2019, 3, 1)) & (df_filtered.date.dt.date <date(2019, 5, 1))]\n",
    "testdataset = testdataset_df.drop(columns=[\"date\"]).rolling(window = 5, step = 1, min_periods= 1).mean().values\n",
    "traindataset = traindataset_df.drop(columns=[\"date\"]).rolling(window = 5, step = 1, min_periods= 1).mean().values\n",
    "\n",
    "columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
    "columns_with_na"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Index(['date', 'zone_069_temp', 'zone_069_fan_spd', 'zone_068_temp',\n",
       "       'zone_068_fan_spd', 'zone_067_temp', 'zone_067_fan_spd',\n",
       "       'zone_066_temp', 'zone_066_fan_spd', 'zone_042_temp',\n",
       "       ...\n",
       "       'zone_066_heating_sp', 'zone_067_heating_sp', 'zone_069_heating_sp',\n",
       "       'zone_070_heating_sp', 'zone_071_heating_sp', 'air_temp_set_1',\n",
       "       'air_temp_set_2', 'dew_point_temperature_set_1d',\n",
       "       'relative_humidity_set_1', 'solar_radiation_set_1'],\n",
       "      dtype='object', length=529)"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "traindataset_df.columns"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0 0\n"
     ]
    }
   ],
   "source": [
    "print(traindataset_df.isna().sum().sum(), testdataset_df.isna().sum().sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(86400, 86400)"
      ]
     },
     "execution_count": 124,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "len(traindataset), len(testdataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 125,
   "metadata": {},
   "outputs": [],
   "source": [
    "traindataset = traindataset.astype('float32')\n",
    "testdataset = testdataset.astype('float32')\n",
    "\n",
    "scaler = StandardScaler()\n",
    "traindataset = scaler.fit_transform(traindataset)\n",
    "testdataset = scaler.transform(testdataset)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(86400, 45)"
      ]
     },
     "execution_count": 126,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "traindataset.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 127,
   "metadata": {},
   "outputs": [],
   "source": [
    "train,test = traindataset,testdataset\n",
    "\n",
    "def create_dataset(dataset,time_step):\n",
    "    x = []\n",
    "    Y = []\n",
    "    for i in range(len(dataset) - time_step - 1):\n",
    "        x.append(dataset[i:(i+time_step),:])\n",
    "        Y.append(dataset[i+time_step,0:-5])\n",
    "    x= np.array(x)\n",
    "    Y = np.array(Y)\n",
    "    return x,Y\n",
    "time_step = 30\n",
    "X_train, y_train = create_dataset(train, time_step)\n",
    "X_test, y_test = create_dataset(test, time_step)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 128,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((86369, 30, 45), (86369, 40))"
      ]
     },
     "execution_count": 128,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "X_train.shape, y_train.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 133,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/5\n",
      "674/675 [============================>.] - ETA: 0s - loss: 0.1090\n",
      "Epoch 1: val_loss improved from inf to 0.26433, saving model to lstm_vav_01.tf\n",
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "675/675 [==============================] - 61s 84ms/step - loss: 0.1089 - val_loss: 0.2643\n",
      "Epoch 2/5\n",
      "675/675 [==============================] - ETA: 0s - loss: 0.0155\n",
      "Epoch 2: val_loss improved from 0.26433 to 0.21391, saving model to lstm_vav_01.tf\n",
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "675/675 [==============================] - 45s 67ms/step - loss: 0.0155 - val_loss: 0.2139\n",
      "Epoch 3/5\n",
      "675/675 [==============================] - ETA: 0s - loss: 0.0081\n",
      "Epoch 3: val_loss improved from 0.21391 to 0.17155, saving model to lstm_vav_01.tf\n",
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "675/675 [==============================] - 58s 86ms/step - loss: 0.0081 - val_loss: 0.1716\n",
      "Epoch 4/5\n",
      "675/675 [==============================] - ETA: 0s - loss: 0.0049\n",
      "Epoch 4: val_loss improved from 0.17155 to 0.14438, saving model to lstm_vav_01.tf\n",
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "675/675 [==============================] - 54s 80ms/step - loss: 0.0049 - val_loss: 0.1444\n",
      "Epoch 5/5\n",
      "675/675 [==============================] - ETA: 0s - loss: 0.0030\n",
      "Epoch 5: val_loss improved from 0.14438 to 0.12414, saving model to lstm_vav_01.tf\n",
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:tensorflow:Assets written to: lstm_vav_01.tf\\assets\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "675/675 [==============================] - 60s 89ms/step - loss: 0.0030 - val_loss: 0.1241\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "<keras.src.callbacks.History at 0x1d5bf064950>"
      ]
     },
     "execution_count": 133,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "\n",
    "model = Sequential()\n",
    "model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
    "model.add(LSTM(units=50, return_sequences=True))\n",
    "model.add(LSTM(units=30))\n",
    "model.add(Dense(units=y_train.shape[1]))\n",
    "\n",
    "model.compile(optimizer='adam', loss='mean_squared_error')\n",
    "\n",
    "checkpoint_path = \"lstm_vav_01.tf\"\n",
    "checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
    "model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=128, verbose=1, callbacks=[checkpoint_callback])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 134,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<tensorflow.python.checkpoint.checkpoint.CheckpointLoadStatus at 0x1d55c631f10>"
      ]
     },
     "execution_count": 134,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "model.load_weights(checkpoint_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 135,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2700/2700 [==============================] - 25s 9ms/step\n"
     ]
    }
   ],
   "source": [
    "test_predict1 = model.predict(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 136,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x1d5582d61d0>]"
      ]
     },
     "execution_count": 136,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "plt.plot(y_test[:,3])\n",
    "plt.plot(y_train[:,3])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib qt\n",
    "var = 1\n",
    "plt.plot(y_test[:,var], label='Original Testing Data', color='blue')\n",
    "plt.plot(test_predict1[:,var], label='Predicted Testing Data', color='red',alpha=0.8)\n",
    "anomalies = np.where(abs(test_predict1[:,var] - y_test[:,var]) > 0.38)\n",
    "plt.scatter(anomalies,test_predict1[anomalies,var], color='black',marker =\"o\",s=100 )\n",
    "\n",
    "\n",
    "plt.title('Testing Data - Predicted vs Actual')\n",
    "plt.xlabel('Time')\n",
    "plt.ylabel('Value')\n",
    "plt.legend()\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.mixture import GaussianMixture\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X =  test_predict1 - y_test\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Creating the GMM instance with desired number of clusters\n",
    "gmm = GaussianMixture(n_components=2)\n",
    "\n",
    "# Fitting the model to the data\n",
    "gmm.fit(X)\n",
    "\n",
    "# Getting the cluster labels\n",
    "labels = gmm.predict(X)\n",
    "\n",
    "# Plotting the data points with colors representing different clusters\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.title('GMM Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "operands could not be broadcast together with shapes (199403,51) (8,) ",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[19], line 6\u001b[0m\n\u001b[0;32m      4\u001b[0m \u001b[38;5;66;03m# Generating random data for demonstration\u001b[39;00m\n\u001b[0;32m      5\u001b[0m np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mseed(\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m----> 6\u001b[0m X \u001b[38;5;241m=\u001b[39m \u001b[43m(\u001b[49m\u001b[43mtest_predict1\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[43my_test\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mscaler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvar_\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m:\u001b[49m\u001b[38;5;241;43m8\u001b[39;49m\u001b[43m]\u001b[49m \u001b[38;5;241m+\u001b[39m scaler\u001b[38;5;241m.\u001b[39mmean_[\u001b[38;5;241m0\u001b[39m:\u001b[38;5;241m8\u001b[39m]\n\u001b[0;32m      8\u001b[0m k \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m6\u001b[39m\n\u001b[0;32m     10\u001b[0m kmeans \u001b[38;5;241m=\u001b[39m KMeans(n_clusters\u001b[38;5;241m=\u001b[39mk)\n",
      "\u001b[1;31mValueError\u001b[0m: operands could not be broadcast together with shapes (199403,51) (8,) "
     ]
    }
   ],
   "source": [
    "from sklearn.cluster import KMeans\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = (test_predict1 - y_test)\n",
    "\n",
    "k = 6\n",
    "\n",
    "kmeans = KMeans(n_clusters=k)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "k = 60\n",
    "X= test_predict1 - y_test\n",
    "processed_data = []\n",
    "feat_df = pd.DataFrame(columns=[\"mean\",\"std\",])\n",
    "for i in range(0,len(X), 60):\n",
    "    mean = X[i:i+k].mean(axis = 0)\n",
    "    std = X[i:i+k].std(axis = 0)\n",
    "    max = X[i:i+k].max(axis = 0)\n",
    "    min = X[i:i+k].min(axis = 0)\n",
    "    iqr = np.percentile(X[i:i+k], 75, axis=0) - np.percentile(X[i:i+k], 25,axis=0)\n",
    "    data = np.concatenate([mean, std, max, min, iqr])\n",
    "    processed_data.append([data])\n",
    "processed_data = np.concatenate(processed_data,axis=0) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "X = processed_data\n",
    "\n",
    "kmeans = KMeans(n_clusters=3, algorithm='elkan', max_iter=1000, n_init = 5)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.mixture import GaussianMixture\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "from sklearn.decomposition import PCA\n",
    "\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = processed_data\n",
    "\n",
    "# Creating the GMM instance with desired number of clusters\n",
    "gmm = GaussianMixture(n_components=3, init_params='k-means++')\n",
    "\n",
    "# Fitting the model to the data\n",
    "gmm.fit(X)\n",
    "labels = gmm.predict(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "# Getting the cluster labels\n",
    "\n",
    "# Plotting the data points with colors representing different clusters\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.title('GMM Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from sklearn.cluster import KMeans\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "# Generating random data for demonstration\n",
    "np.random.seed(0)\n",
    "X = (test_predict1 * scaler.var_[0:8] + scaler.mean_[0:8]) - (y_test * scaler.var_[0:8] + scaler.mean_[0:8])\n",
    "k = 6\n",
    "\n",
    "kmeans = KMeans(n_clusters=k)\n",
    "\n",
    "kmeans.fit(X)\n",
    "\n",
    "\n",
    "pca = PCA(n_components=2)\n",
    "X = pca.fit_transform(X)\n",
    "\n",
    "\n",
    "\n",
    "# Getting the cluster centers and labels\n",
    "centroids = kmeans.cluster_centers_\n",
    "centroids = pca.transform(centroids)\n",
    "labels = kmeans.labels_\n",
    "\n",
    "# Plotting the data points and cluster centers\n",
    "plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', alpha=0.5)\n",
    "plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', c='red', s=200, linewidths=2)\n",
    "plt.title('KMeans Clustering')\n",
    "plt.xlabel('Feature 1')\n",
    "plt.ylabel('Feature 2')\n",
    "plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "tensorflow",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}