File size: 4,290 Bytes
cd9d584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "def initialize_lists(size=30):\n",
    "    initial_values = [0] * size\n",
    "    return initial_values.copy(), initial_values.copy(), initial_values.copy()\n",
    "\n",
    "def get_window(df, len_df):\n",
    "    if len_df > 30:\n",
    "        return df[len_df-31:len_df].astype('float32')\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def transform_window(df_window, scaler):\n",
    "    return scaler.transform(df_window)\n",
    "\n",
    "def prepare_input(df_trans):\n",
    "    return df_trans[:30,:].reshape((1,30,30))\n",
    "\n",
    "def predict(model, df_new):\n",
    "    return model.predict(df_new)\n",
    "\n",
    "def calculate_residuals(df_trans, pred):\n",
    "    actual = df_trans[30,:25]\n",
    "    resid = actual - pred\n",
    "    return actual, resid\n",
    "\n",
    "def resize_prediction(pred, df_trans):\n",
    "    pred.resize((pred.shape[0], pred.shape[1] + len(df_trans[30,25:])))\n",
    "    pred[:, -len(df_trans[30,25:]):] = df_trans[30,25:]\n",
    "    return pred\n",
    "\n",
    "def inverse_transform(scaler, pred, df_trans):\n",
    "    pred = scaler.inverse_transform(np.array(pred))\n",
    "    actual = scaler.inverse_transform(np.array([df_trans[30,:]]))\n",
    "    return actual, pred\n",
    "\n",
    "def update_lists(actual_list, pred_list, resid_list, actual, pred, resid):\n",
    "    actual_list.pop(0)\n",
    "    pred_list.pop(0)\n",
    "    resid_list.pop(0)\n",
    "    actual_list.append(actual[0,1])\n",
    "    pred_list.append(pred[0,1])\n",
    "    resid_list.append(resid[0,1])\n",
    "    return actual_list, pred_list, resid_list\n",
    "\n",
    "def calculate_distances(resid, kmeans1, kmeans2, kmeans3, kmeans4):\n",
    "    dist = []\n",
    "    dist.append(np.linalg.norm(resid[:,1:8]-kmeans1.cluster_centers_[0], ord=2, axis=1))\n",
    "    dist.append(np.linalg.norm(resid[:,8:15]-kmeans2.cluster_centers_[0], ord=2, axis=1))\n",
    "    dist.append(np.linalg.norm(resid[:,15:22]-kmeans3.cluster_centers_[0], ord=2, axis=1))\n",
    "    dist.append(np.linalg.norm(resid[:,22:29]-kmeans4.cluster_centers_[0], ord=2, axis=1))\n",
    "    return np.array(dist)\n",
    "\n",
    "def pipeline(df, scaler, model, kmeans1, kmeans2, kmeans3, kmeans4):\n",
    "    actual_list, pred_list, resid_list = initialize_lists()\n",
    "    len_df = np.len(df)\n",
    "    df_window = get_window(df, len_df)\n",
    "    if df_window is not None:\n",
    "        df_trans = transform_window(df_window, scaler)\n",
    "        df_new = prepare_input(df_trans)\n",
    "        pred = predict(model, df_new)\n",
    "        actual, resid = calculate_residuals(df_trans, pred)\n",
    "        pred = resize_prediction(pred, df_trans)\n",
    "        actual, pred = inverse_transform(scaler, pred, df_trans)\n",
    "        actual_list, pred_list, resid_list = update_lists(actual_list, pred_list, resid_list, actual, pred, resid)\n",
    "        dist = calculate_distances(resid, kmeans1, kmeans2, kmeans3, kmeans4)\n",
    "        return actual_list, pred_list, resid_list, dist\n",
    "    else:\n",
    "        return actual_list, pred_list, resid_list, None\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['a', 'b', 'c', 'd']"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inp = ['a', 'b']\n",
    "out = ['c','d']\n",
    "\n",
    "inp+out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "smartbuilding",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}