Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import GPT2Tokenizer, GPT2LMHeadModel | |
import os | |
# Get the Hugging Face token from the environment variable | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# Load the tokenizer and model | |
tokenizer = GPT2Tokenizer.from_pretrained('gpt2', use_auth_token=HF_TOKEN) | |
model = GPT2LMHeadModel.from_pretrained('skylersterling/TopicGPT', use_auth_token=HF_TOKEN) | |
model.eval() | |
model.to('cpu') | |
# Define the function that generates text from a prompt | |
def generate_text(prompt, temperature): | |
print(prompt) | |
prompt_with_eos = "#CONTEXT# " + prompt + " #TOPIC# " # Add the string "EOS" to the end of the prompt | |
input_tokens = tokenizer.encode(prompt_with_eos, return_tensors='pt') | |
input_tokens = input_tokens.to('cpu') | |
generated_text = prompt_with_eos # Start with the initial prompt plus "EOS" | |
prompt_length = len(generated_text) | |
for _ in range(80): # Adjust the range to control the number of tokens generated | |
with torch.no_grad(): | |
outputs = model(input_tokens) | |
predictions = outputs.logits[:, -1, :] / temperature | |
next_token = torch.multinomial(torch.softmax(predictions, dim=-1), 1) | |
input_tokens = torch.cat((input_tokens, next_token), dim=1) | |
decoded_token = tokenizer.decode(next_token.item()) | |
generated_text += decoded_token # Append the new token to the generated text | |
if decoded_token == "#": # Stop if the end of sequence token is generated | |
break | |
yield generated_text[prompt_length:] # Yield the generated text excluding the initial prompt plus "EOS" | |
# Create a Gradio interface with a text input and a slider for temperature | |
interface = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.3, label="Temperature"), | |
], | |
outputs=gr.Textbox(), | |
live=False, | |
description="TopicGPT processes the input and returns a reasonably accurate guess of the topic/theme of a given conversation." | |
) | |
interface.launch() | |