jucamohedano
commited on
Commit
·
0d44b47
1
Parent(s):
373c6ce
Add application and requirements.txt
Browse files- app.py +92 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
import warnings
|
5 |
+
|
6 |
+
from functools import partial
|
7 |
+
from sklearn.datasets import make_blobs
|
8 |
+
from sklearn.svm import LinearSVC
|
9 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
10 |
+
from sklearn.exceptions import ConvergenceWarning
|
11 |
+
|
12 |
+
def train_model(C, n_samples):
|
13 |
+
default_base = {"n_samples": 20}
|
14 |
+
|
15 |
+
# Algorithms to compare
|
16 |
+
params = default_base.copy()
|
17 |
+
params.update({"n_samples":n_samples})
|
18 |
+
|
19 |
+
X, y = make_blobs(n_samples=params["n_samples"], centers=2, random_state=0)
|
20 |
+
|
21 |
+
fig, ax = plt.subplots()
|
22 |
+
|
23 |
+
# catch warnings related to convergence
|
24 |
+
with warnings.catch_warnings():
|
25 |
+
warnings.filterwarnings("ignore", category=ConvergenceWarning)
|
26 |
+
|
27 |
+
clf = LinearSVC(C=C, loss="hinge", random_state=42).fit(X, y)
|
28 |
+
# obtain the support vectors through the decision function
|
29 |
+
decision_function = clf.decision_function(X)
|
30 |
+
# we can also calculate the decision function manually
|
31 |
+
# decision_function = np.dot(X, clf.coef_[0]) + clf.intercept_[0]
|
32 |
+
# The support vectors are the samples that lie within the margin
|
33 |
+
# boundaries, whose size is conventionally constrained to 1
|
34 |
+
support_vector_indices = np.where(np.abs(decision_function) <= 1 + 1e-15)[0]
|
35 |
+
support_vectors = X[support_vector_indices]
|
36 |
+
|
37 |
+
ax.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)
|
38 |
+
DecisionBoundaryDisplay.from_estimator(
|
39 |
+
clf,
|
40 |
+
X,
|
41 |
+
ax=ax,
|
42 |
+
grid_resolution=50,
|
43 |
+
plot_method="contour",
|
44 |
+
colors="k",
|
45 |
+
levels=[-1, 0, 1],
|
46 |
+
alpha=0.5,
|
47 |
+
linestyles=["--", "-", "--"],
|
48 |
+
)
|
49 |
+
ax.scatter(
|
50 |
+
support_vectors[:, 0],
|
51 |
+
support_vectors[:, 1],
|
52 |
+
s=100,
|
53 |
+
linewidth=1,
|
54 |
+
facecolors="none",
|
55 |
+
edgecolors="k",
|
56 |
+
)
|
57 |
+
ax.set_title("C=" + str(C))
|
58 |
+
|
59 |
+
return fig
|
60 |
+
|
61 |
+
def iter_grid(n_rows, n_cols):
|
62 |
+
# create a grid using gradio Block
|
63 |
+
for _ in range(n_rows):
|
64 |
+
with gr.Row():
|
65 |
+
for _ in range(n_cols):
|
66 |
+
with gr.Column():
|
67 |
+
yield
|
68 |
+
|
69 |
+
title = "📈 Linear Support Vector Classification"
|
70 |
+
with gr.Blocks(title=title) as demo:
|
71 |
+
gr.Markdown(f"## {title}")
|
72 |
+
gr.Markdown("Unlike SVC (based on LIBSVM), LinearSVC "
|
73 |
+
+ "(based on LIBLINEAR) does not provide the"
|
74 |
+
+ "support vectors. This example demonstrates"
|
75 |
+
+ "how to obtain the support vectors in LinearSVC.")
|
76 |
+
|
77 |
+
|
78 |
+
input_models = ["Bisecting K-Means", "K-Means"]
|
79 |
+
|
80 |
+
n_samples = gr.Slider(minimum=20, maximum=100, step=5,
|
81 |
+
label = "Number of Samples")
|
82 |
+
|
83 |
+
input_model = "LinearSVC"
|
84 |
+
# Regularization parameter C included in loop
|
85 |
+
for _, C in zip(iter_grid(1,2), [1, 100]):
|
86 |
+
plot = gr.Plot(label=input_model)
|
87 |
+
|
88 |
+
fn = partial(train_model, C)
|
89 |
+
n_samples.change(fn=fn, inputs=[n_samples], outputs=plot)
|
90 |
+
|
91 |
+
|
92 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
matplotlib
|