Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from crewai import Crew, Agent, Task, Process
|
3 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
4 |
+
#from langchain_openai import ChatOpenAI # Remove OpenAI
|
5 |
+
from langchain_community.llms import HuggingFaceHub # Import Hugging Face Hub
|
6 |
+
import datetime
|
7 |
+
import os
|
8 |
+
|
9 |
+
# --- Environment Setup ---
|
10 |
+
# Make sure to set your HUGGINGFACEHUB_API_TOKEN in your environment variables.
|
11 |
+
|
12 |
+
huggingfacehub_api_token = os.environ.get("HUGGINGFACEHUB_API_TOKEN")
|
13 |
+
|
14 |
+
|
15 |
+
# --- Helper Functions ---
|
16 |
+
|
17 |
+
def get_date_range():
|
18 |
+
"""Calculates yesterday's date for the search query."""
|
19 |
+
today = datetime.date.today()
|
20 |
+
yesterday = today - datetime.timedelta(days=1)
|
21 |
+
return yesterday.strftime("%Y-%m-%d")
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
# --- Agent and Task Definitions ---
|
26 |
+
|
27 |
+
def create_ai_news_crew():
|
28 |
+
"""Creates the CrewAI crew, agents, and tasks."""
|
29 |
+
|
30 |
+
search_tool = DuckDuckGoSearchRun()
|
31 |
+
|
32 |
+
# Define Agents
|
33 |
+
researcher = Agent(
|
34 |
+
role='AI News Researcher',
|
35 |
+
goal='Find the most recent and relevant AI news articles from yesterday',
|
36 |
+
backstory="""You are a specialized AI research agent
|
37 |
+
focused on finding the most relevant and impactful news articles
|
38 |
+
related to Artificial Intelligence. You excel at using search
|
39 |
+
tools effectively to find information.""",
|
40 |
+
verbose=True,
|
41 |
+
allow_delegation=False,
|
42 |
+
tools=[search_tool],
|
43 |
+
llm=HuggingFaceHub(
|
44 |
+
repo_id="deepseek-ai/DeepSeek-Coder-33B-Instruct", # Use the DeepSeek-Coder model (Instruct version is better for this task)
|
45 |
+
model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "repetition_penalty": 1.2}, # Added repetition penalty
|
46 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
47 |
+
)
|
48 |
+
)
|
49 |
+
|
50 |
+
summarizer = Agent(
|
51 |
+
role='AI News Summarizer',
|
52 |
+
goal='Summarize the key news articles and create a concise daily briefing',
|
53 |
+
backstory="""You are an expert at taking multiple pieces of information
|
54 |
+
and condensing them into clear, concise, and informative summaries.
|
55 |
+
You are writing for a busy executive who needs to stay up-to-date
|
56 |
+
on AI developments quickly.""",
|
57 |
+
verbose=True,
|
58 |
+
allow_delegation=False,
|
59 |
+
llm=HuggingFaceHub(
|
60 |
+
repo_id="deepseek-ai/DeepSeek-Coder-33B-Instruct", #Use DeepSeek-Coder model
|
61 |
+
model_kwargs={"temperature": 0.2, "max_new_tokens": 1024, "repetition_penalty": 1.2}, # Lower temp, high rep penalty for concise output
|
62 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
63 |
+
)
|
64 |
+
)
|
65 |
+
|
66 |
+
# Define Tasks
|
67 |
+
yesterday_str = get_date_range()
|
68 |
+
research_task = Task(
|
69 |
+
description=f"""Find at least 5 relevant news articles about Artificial Intelligence
|
70 |
+
published on {yesterday_str}. Focus on major breakthroughs,
|
71 |
+
industry news, ethical considerations, and new applications of AI.
|
72 |
+
Return the titles and URLs of the most important articles.
|
73 |
+
""",
|
74 |
+
agent=researcher
|
75 |
+
)
|
76 |
+
|
77 |
+
summarize_task = Task(
|
78 |
+
description="""Using the news articles identified, create a daily AI news
|
79 |
+
briefing. The briefing should be no more than 500 words and should
|
80 |
+
cover the 3-5 most important AI news items from yesterday. Include
|
81 |
+
a very brief (1-2 sentence) summary of each item and, if possible, link to the source.
|
82 |
+
Format the output using markdown for readability.
|
83 |
+
""",
|
84 |
+
agent=summarizer
|
85 |
+
)
|
86 |
+
|
87 |
+
# Create Crew
|
88 |
+
crew = Crew(
|
89 |
+
agents=[researcher, summarizer],
|
90 |
+
tasks=[research_task, summarize_task],
|
91 |
+
verbose=True, # You can set it to 1 or 2 to different level of logs
|
92 |
+
process=Process.sequential # Tasks are executed sequentially
|
93 |
+
)
|
94 |
+
return crew
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
# --- Streamlit App ---
|
100 |
+
|
101 |
+
def main():
|
102 |
+
"""Main function to run the Streamlit app."""
|
103 |
+
|
104 |
+
st.set_page_config(
|
105 |
+
page_title="AI Daily News Briefing",
|
106 |
+
page_icon="🤖",
|
107 |
+
layout="wide"
|
108 |
+
)
|
109 |
+
|
110 |
+
st.title("AI Daily News Briefing 🤖")
|
111 |
+
st.write("Get a concise summary of the most important AI news from yesterday.")
|
112 |
+
|
113 |
+
if st.button("Generate Briefing"):
|
114 |
+
with st.spinner("Generating your daily AI news briefing..."):
|
115 |
+
try:
|
116 |
+
crew = create_ai_news_crew()
|
117 |
+
result = crew.kickoff() # Start the crew's work
|
118 |
+
st.subheader("Your AI News Briefing:")
|
119 |
+
st.markdown(result)
|
120 |
+
|
121 |
+
except Exception as e:
|
122 |
+
st.error(f"An error occurred: {e}")
|
123 |
+
st.error("Please check your API key and ensure you have set up the environment correctly.")
|
124 |
+
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
if not huggingfacehub_api_token:
|
129 |
+
st.error("HUGGINGFACEHUB_API_TOKEN is not set. Please set it as an environment variable.")
|
130 |
+
else:
|
131 |
+
main()
|