summary / fengshen /utils /convert_tf_checkpoint_to_pytorch.py
skf15963's picture
Duplicate from fclong/summary
fb238e8
"""Convert ALBERT checkpoint."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
# from models.transformers.modeling_albert_bright import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
import logging
logging.basicConfig(level=logging.INFO)
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, bert_config_file, pytorch_dump_path):
# Initialise PyTorch model
config = BertConfig.from_pretrained(bert_config_file)
# print("Building PyTorch model from configuration: {}".format(str(config)))
model = BertForPreTraining(config)
# Load weights from tf checkpoint
load_tf_weights_in_bert(model, config, tf_checkpoint_path)
# Save pytorch-model
print("Save PyTorch model to {}".format(pytorch_dump_path))
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--tf_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path to the TensorFlow checkpoint path.")
parser.add_argument("--bert_config_file",
default = None,
type = str,
required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--pytorch_dump_path",
default = None,
type = str,
required = True,
help = "Path to the output PyTorch model.")
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path,args.bert_config_file,
args.pytorch_dump_path)
'''
# google
python convert_albert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=./prev_trained_model/albert_large_zh \
--bert_config_file=./prev_trained_model/albert_large_zh/config.json \
--pytorch_dump_path=./prev_trained_model/albert_large_zh/pytorch_model.bin
# bright
from model.modeling_albert_bright import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
python convert_albert_tf_checkpoint_to_pytorch.py \
--tf_checkpoint_path=./prev_trained_model/albert_base_bright \
--bert_config_file=./prev_trained_model/albert_base_bright/config.json \
--pytorch_dump_path=./prev_trained_model/albert_base_bright/pytorch_model.bin
'''