Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,6 @@
|
|
1 |
# Importing the requirements
|
2 |
-
import numpy as np
|
3 |
import gradio as gr
|
4 |
-
import
|
5 |
-
from PIL import Image
|
6 |
-
from transformers import DPTImageProcessor, DPTForDepthEstimation
|
7 |
-
|
8 |
-
|
9 |
-
# Load the model and feature extractor
|
10 |
-
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-beit-large-512")
|
11 |
-
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-beit-large-512")
|
12 |
-
|
13 |
-
|
14 |
-
def process_image(image):
|
15 |
-
"""
|
16 |
-
Preprocesses an image, passes it through a model, and returns the formatted depth map as an image.
|
17 |
-
|
18 |
-
Args:
|
19 |
-
image (PIL.Image.Image): The input image.
|
20 |
-
|
21 |
-
Returns:
|
22 |
-
PIL.Image.Image: The formatted depth map as an image.
|
23 |
-
"""
|
24 |
-
|
25 |
-
# Preprocess the image for the model
|
26 |
-
encoding = feature_extractor(image, return_tensors="pt")
|
27 |
-
|
28 |
-
# Forward pass through the model
|
29 |
-
with torch.no_grad():
|
30 |
-
outputs = model(**encoding)
|
31 |
-
predicted_depth = outputs.predicted_depth
|
32 |
-
|
33 |
-
# Interpolate the predicted depth map to the original image size
|
34 |
-
prediction = torch.nn.functional.interpolate(
|
35 |
-
predicted_depth.unsqueeze(1),
|
36 |
-
size=image.size[::-1],
|
37 |
-
mode="bicubic",
|
38 |
-
align_corners=False,
|
39 |
-
).squeeze()
|
40 |
-
output = prediction.cpu().numpy()
|
41 |
-
formatted = (output * 255 / np.max(output)).astype("uint8")
|
42 |
-
|
43 |
-
# Return the formatted depth map as an image
|
44 |
-
return Image.fromarray(formatted)
|
45 |
|
46 |
|
47 |
# Image input for the interface
|
@@ -52,9 +11,9 @@ answer = gr.Image(type="pil", label="Depth Map")
|
|
52 |
|
53 |
# Examples for the interface
|
54 |
examples = [
|
55 |
-
["cat.jpg"],
|
56 |
-
["dog.jpg"],
|
57 |
-
["bird.jpg"],
|
58 |
]
|
59 |
|
60 |
# Title, description, and article for the interface
|
|
|
1 |
# Importing the requirements
|
|
|
2 |
import gradio as gr
|
3 |
+
from depth_estimation import process_image # Import the depth estimation function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
# Image input for the interface
|
|
|
11 |
|
12 |
# Examples for the interface
|
13 |
examples = [
|
14 |
+
["images/cat.jpg"],
|
15 |
+
["images/dog.jpg"],
|
16 |
+
["images/bird.jpg"],
|
17 |
]
|
18 |
|
19 |
# Title, description, and article for the interface
|