skirres commited on
Commit
cbbc46e
·
1 Parent(s): 089ae93

Add links and autoformat

Browse files
Files changed (1) hide show
  1. README.md +35 -30
README.md CHANGED
@@ -9,44 +9,49 @@ pinned: false
9
 
10
  # About Sinequa
11
 
12
- Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses Neural Search to provide the most relevant content for your search request.
 
13
 
14
- # Neural Search models
15
 
16
- Sinequa Search uses a technology called Neural Search. Neural Search is a hybrid search solution based on both Keyword Search and Vector Search.
17
- This search workflow implies two types of models for which we deliver various versions here.
18
 
19
- The two collections below bring together the recommended model combinations for English only content and multilingual content.
 
 
 
20
 
21
  ## Vectorizer
22
 
23
- Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in our vector index and the
24
- query vector is used at query time to look up relevant passages in the index.
25
 
26
- Here is an overview of the models we deliver publicly.
27
 
28
- | Model | Languages | Relevance | Inference Time | GPU Memory |
29
- |--------------------------------|-----------------------------|-----------|----------------|------------|
30
- | vectorizer-v1-S-en | en | 0.456 | 52 ms | 330 MiB |
31
- | vectorizer-v1-S-multilingual | de, en, es, fr | 0.448 | 51 ms | 580 MiB |
32
- | vectorizer.vanilla | en | 0.639 | 53 ms | 330 MiB |
33
- | vectorizer.raspberry | de, en, es, fr, it, ja, nl, pt, zs | 0.613 | 52 ms | 610 MiB |
34
- | vectorizer.hazelnut | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.590 | 52 ms | 610 MiB |
35
- | vectorizer.guava | de, en, es, fr, it, ja, nl, pt, zs, zh-trad, pl | 0.616 | 52 ms | 610 MiB |
36
 
37
  ## Passage Ranker
38
 
39
- Passage Rankers are models which produce a relevance score given a query-passage pair and is used to order search results coming from Keyword and Vector search.
40
-
41
- Here is an overview of the models we deliver publicly.
42
-
43
- | Model | Languages | Relevance | Inference Time | GPU Memory |
44
- |---------------------------------|-----------------------------|-----------|----------------|------------|
45
- | passage-ranker-v1-XS-en | en | 0.438 | 20 ms | 170 MiB |
46
- | passage-ranker-v1-XS-multilingual | de, en, es, fr | 0.453 | 21 ms | 300 MiB |
47
- | passage-ranker-v1-L-en | en | 0.466 | 356 ms | 1060 MiB |
48
- | passage-ranker-v1-L-multilingual | de, en, es, fr | 0.471 | 357 ms | 1130 MiB |
49
- | passage-ranker.chocolate | en | 0.484 | 64 ms | 550 MiB |
50
- | passage-ranker.strawberry | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
51
- | passage-ranker.mango | de, en, es, fr, it, ja, nl, pt, zs | 0.480 | 358 ms | 1070 MiB |
52
- | passage-ranker.pistachio | de, en, es, fr, it, ja, nl, pt, zs, pl | 0.380 | 358 ms | 1070 MiB |
 
 
9
 
10
  # About Sinequa
11
 
12
+ Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses
13
+ Neural Search to provide the most relevant content for your search requests.
14
 
15
+ # Neural Search Models
16
 
17
+ Sinequa Search uses a technology called Neural Search. Neural Search is a hybrid search solution based on both Keyword
18
+ Search and Vector Search. This search workflow implies two types of models for which we deliver various versions here.
19
 
20
+ The two collections below bring together the recommended model combinations for:
21
+
22
+ - [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
23
+ - [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
24
 
25
  ## Vectorizer
26
 
27
+ Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
28
+ our vector index and the query vector is used at query time to look up relevant passages in the index.
29
 
30
+ Here is an overview of the models we deliver publicly:
31
 
32
+ | Model | Languages | Relevance | Inference Time | GPU Memory |
33
+ |---------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|----------------|------------|
34
+ | [vectorizer-v1-S-en](https://huggingface.co/sinequa/vectorizer-v1-S-en) | en | 0.456 | 52 ms | 330 MiB |
35
+ | [vectorizer-v1-S-multilingual](https://huggingface.co/sinequa/vectorizer-v1-S-multilingual) | de, en, es, fr | 0.448 | 51 ms | 580 MiB |
36
+ | [vectorizer.vanilla](https://huggingface.co/sinequa/vectorizer.vanilla) | en | 0.639 | 53 ms | 330 MiB |
37
+ | [vectorizer.raspberry](https://huggingface.co/sinequa/vectorizer.raspberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.613 | 52 ms | 610 MiB |
38
+ | [vectorizer.hazelnut](https://huggingface.co/sinequa/vectorizer.hazelnut) | de, en, es, fr, it, ja, nl, pl, pt, zs | 0.590 | 52 ms | 610 MiB |
39
+ | [vectorizer.guava](https://huggingface.co/sinequa/vectorizer.guava) | de, en, es, fr, it, ja, nl, pl, pt, zh-trad, zs | 0.616 | 52 ms | 610 MiB |
40
 
41
  ## Passage Ranker
42
 
43
+ Passage Rankers are models which produce a relevance score given a query-passage pair and are used to order search
44
+ results coming from Keyword and Vector search.
45
+
46
+ Here is an overview of the models we deliver publicly:
47
+
48
+ | Model | Languages | Relevance | Inference Time | GPU Memory |
49
+ |-------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|----------------|------------|
50
+ | [passage-ranker-v1-XS-en](https://huggingface.co/sinequa/passage-ranker-v1-XS-en) | en | 0.438 | 20 ms | 170 MiB |
51
+ | [passage-ranker-v1-XS-multilingual](https://huggingface.co/sinequa/passage-ranker-v1-XS-multilingual) | de, en, es, fr | 0.453 | 21 ms | 300 MiB |
52
+ | [passage-ranker-v1-L-en](https://huggingface.co/sinequa/passage-ranker-v1-L-en) | en | 0.466 | 356 ms | 1060 MiB |
53
+ | [passage-ranker-v1-L-multilingual](https://huggingface.co/sinequa/passage-ranker-v1-L-multilingual) | de, en, es, fr | 0.471 | 357 ms | 1130 MiB |
54
+ | [passage-ranker.chocolate](https://huggingface.co/sinequa/passage-ranker.chocolate) | en | 0.484 | 64 ms | 550 MiB |
55
+ | [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
56
+ | [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs | 0.480 | 358 ms | 1070 MiB |
57
+ | [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs | 0.380 | 358 ms | 1070 MiB |