Spaces:
Running
Running
Add links and autoformat
Browse files
README.md
CHANGED
@@ -9,44 +9,49 @@ pinned: false
|
|
9 |
|
10 |
# About Sinequa
|
11 |
|
12 |
-
Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses
|
|
|
13 |
|
14 |
-
# Neural Search
|
15 |
|
16 |
-
Sinequa Search uses a technology called Neural Search. Neural Search is a hybrid search solution based on both Keyword
|
17 |
-
This search workflow implies two types of models for which we deliver various versions here.
|
18 |
|
19 |
-
The two collections below bring together the recommended model combinations for
|
|
|
|
|
|
|
20 |
|
21 |
## Vectorizer
|
22 |
|
23 |
-
Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
|
24 |
-
query vector is used at query time to look up relevant passages in the index.
|
25 |
|
26 |
-
Here is an overview of the models we deliver publicly
|
27 |
|
28 |
-
| Model
|
29 |
-
|
30 |
-
| vectorizer-v1-S-en
|
31 |
-
| vectorizer-v1-S-multilingual
|
32 |
-
| vectorizer.vanilla
|
33 |
-
| vectorizer.raspberry
|
34 |
-
| vectorizer.hazelnut
|
35 |
-
| vectorizer.guava
|
36 |
|
37 |
## Passage Ranker
|
38 |
|
39 |
-
Passage Rankers are models which produce a relevance score given a query-passage pair and
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
| passage-ranker-v1-XS-
|
47 |
-
| passage-ranker-v1-
|
48 |
-
| passage-ranker-v1-L-
|
49 |
-
| passage-ranker.
|
50 |
-
| passage-ranker.
|
51 |
-
| passage-ranker.
|
52 |
-
| passage-ranker.
|
|
|
|
9 |
|
10 |
# About Sinequa
|
11 |
|
12 |
+
Sinequa provides an Enterprise Search solution that lets you search through your company's internal documents. It uses
|
13 |
+
Neural Search to provide the most relevant content for your search requests.
|
14 |
|
15 |
+
# Neural Search Models
|
16 |
|
17 |
+
Sinequa Search uses a technology called Neural Search. Neural Search is a hybrid search solution based on both Keyword
|
18 |
+
Search and Vector Search. This search workflow implies two types of models for which we deliver various versions here.
|
19 |
|
20 |
+
The two collections below bring together the recommended model combinations for:
|
21 |
+
|
22 |
+
- [English only content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-english-content-673f2d584d396ce427ade232)
|
23 |
+
- [multilingual content](https://huggingface.co/collections/sinequa/best-neural-search-models-for-multilingual-content-673f2ec7c6fb004642a24444)
|
24 |
|
25 |
## Vectorizer
|
26 |
|
27 |
+
Vectorizers are models which produce an embedding vector given a passage or a query. The passage vectors are stored in
|
28 |
+
our vector index and the query vector is used at query time to look up relevant passages in the index.
|
29 |
|
30 |
+
Here is an overview of the models we deliver publicly:
|
31 |
|
32 |
+
| Model | Languages | Relevance | Inference Time | GPU Memory |
|
33 |
+
|---------------------------------------------------------------------------------------------|-------------------------------------------------|-----------|----------------|------------|
|
34 |
+
| [vectorizer-v1-S-en](https://huggingface.co/sinequa/vectorizer-v1-S-en) | en | 0.456 | 52 ms | 330 MiB |
|
35 |
+
| [vectorizer-v1-S-multilingual](https://huggingface.co/sinequa/vectorizer-v1-S-multilingual) | de, en, es, fr | 0.448 | 51 ms | 580 MiB |
|
36 |
+
| [vectorizer.vanilla](https://huggingface.co/sinequa/vectorizer.vanilla) | en | 0.639 | 53 ms | 330 MiB |
|
37 |
+
| [vectorizer.raspberry](https://huggingface.co/sinequa/vectorizer.raspberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.613 | 52 ms | 610 MiB |
|
38 |
+
| [vectorizer.hazelnut](https://huggingface.co/sinequa/vectorizer.hazelnut) | de, en, es, fr, it, ja, nl, pl, pt, zs | 0.590 | 52 ms | 610 MiB |
|
39 |
+
| [vectorizer.guava](https://huggingface.co/sinequa/vectorizer.guava) | de, en, es, fr, it, ja, nl, pl, pt, zh-trad, zs | 0.616 | 52 ms | 610 MiB |
|
40 |
|
41 |
## Passage Ranker
|
42 |
|
43 |
+
Passage Rankers are models which produce a relevance score given a query-passage pair and are used to order search
|
44 |
+
results coming from Keyword and Vector search.
|
45 |
+
|
46 |
+
Here is an overview of the models we deliver publicly:
|
47 |
+
|
48 |
+
| Model | Languages | Relevance | Inference Time | GPU Memory |
|
49 |
+
|-------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|----------------|------------|
|
50 |
+
| [passage-ranker-v1-XS-en](https://huggingface.co/sinequa/passage-ranker-v1-XS-en) | en | 0.438 | 20 ms | 170 MiB |
|
51 |
+
| [passage-ranker-v1-XS-multilingual](https://huggingface.co/sinequa/passage-ranker-v1-XS-multilingual) | de, en, es, fr | 0.453 | 21 ms | 300 MiB |
|
52 |
+
| [passage-ranker-v1-L-en](https://huggingface.co/sinequa/passage-ranker-v1-L-en) | en | 0.466 | 356 ms | 1060 MiB |
|
53 |
+
| [passage-ranker-v1-L-multilingual](https://huggingface.co/sinequa/passage-ranker-v1-L-multilingual) | de, en, es, fr | 0.471 | 357 ms | 1130 MiB |
|
54 |
+
| [passage-ranker.chocolate](https://huggingface.co/sinequa/passage-ranker.chocolate) | en | 0.484 | 64 ms | 550 MiB |
|
55 |
+
| [passage-ranker.strawberry](https://huggingface.co/sinequa/passage-ranker.strawberry) | de, en, es, fr, it, ja, nl, pt, zs | 0.451 | 63 ms | 1060 MiB |
|
56 |
+
| [passage-ranker.mango](https://huggingface.co/sinequa/passage-ranker.mango) | de, en, es, fr, it, ja, nl, pt, zs | 0.480 | 358 ms | 1070 MiB |
|
57 |
+
| [passage-ranker.pistachio](https://huggingface.co/sinequa/passage-ranker.pistachio) | de, en, es, fr, it, ja, nl, pl, pt, zs | 0.380 | 358 ms | 1070 MiB |
|