Spaces:
Runtime error
Runtime error
import torch | |
import math | |
import numpy as np | |
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, UniPCMultistepScheduler | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from typing import Union, Optional, List, Callable, Dict, Any, Tuple | |
from momentum_scheduler import ( | |
GHVBScheduler, | |
PLMSWithHBScheduler, | |
PLMSWithNTScheduler, | |
MomentumDPMSolverMultistepScheduler, | |
MomentumUniPCMultistepScheduler, | |
) | |
available_solvers = { | |
"GHVB": GHVBScheduler, | |
"PLMS_HB": PLMSWithHBScheduler, | |
"PLMS_NT": PLMSWithNTScheduler, | |
"DPM-Solver++": MomentumDPMSolverMultistepScheduler, | |
"UniPC": MomentumUniPCMultistepScheduler, | |
} | |
def get_momentum_number(order, beta): | |
out = order if beta == 1.0 else order - (1 - beta) | |
return out | |
def setup_scheduler(pipe, scheduler, momentum_type="Polyak's heavy ball", order=4.0, beta=1.0, original_config=None): | |
assert original_config is not None | |
if scheduler in ["DPM-Solver++", "UniPC"]: | |
if momentum_type in ["Nesterov"]: | |
raise NotImplementedError(f"{scheduler} w/ Nesterov is not implemented.") | |
pipe.scheduler = available_solvers[scheduler].from_config(original_config) | |
pipe.scheduler.initialize_momentum(beta=beta) | |
elif scheduler in ["PLMS"]: | |
momentum_number = get_momentum_number(order, beta) | |
method = "PLMS_HB" if momentum_type == "Polyak's heavy ball" else "PLMS_NT" | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config) | |
pipe.init_scheduler(method=method, order=momentum_number) | |
pipe.clear_scheduler() | |
elif scheduler in ["GHVB"]: | |
momentum_number = get_momentum_number(order, beta) | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config) | |
pipe.init_scheduler(method="GHVB", order=momentum_number) | |
pipe.clear_scheduler() | |
return pipe | |
class CustomPipeline(StableDiffusionPipeline): | |
def clear_scheduler(self): | |
self.scheduler_uncond.clear() | |
self.scheduler_text.clear() | |
def init_scheduler(self, method, order): | |
# equivalent to not applied numerical operator splitting since orders are the same | |
self.scheduler_uncond = available_solvers[method](self.scheduler, order) | |
self.scheduler_text = available_solvers[method](self.scheduler, order) | |
def get_noise(self, latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
grads_a = guidance_scale * (noise_pred_text - noise_pred_uncond) | |
return noise_pred_uncond, grads_a | |
def denoising_step( | |
self, | |
latents, | |
prompt_embeds, | |
guidance_scale, | |
t, | |
do_classifier_free_guidance, | |
method, | |
extra_step_kwargs, | |
): | |
noise_pred_uncond, grads_a = self.get_noise( | |
latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance | |
) | |
if method in ["dpm", "unipc"]: | |
latents = self.scheduler.step(noise_pred_uncond + grads_a, t, latents, **extra_step_kwargs).prev_sample | |
elif method in ["hb", "ghvb", "nt"]: | |
latents = self.scheduler_uncond.step(noise_pred_uncond, t, latents, output_mode="scale") | |
latents = self.scheduler_text.step(grads_a, t, latents, output_mode='back') | |
else: | |
raise NotImplementedError | |
return latents | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
method="ghvb", | |
): | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# print(timesteps) | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
latents = self.denoising_step( | |
latents, | |
prompt_embeds, | |
guidance_scale, | |
t, | |
do_classifier_free_guidance, | |
method, | |
extra_step_kwargs, | |
) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
if output_type == "latent": | |
image = latents | |
has_nsfw_concept = None | |
elif output_type == "pil": | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 9. Run safety checker | |
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
has_nsfw_concept = False | |
# 10. Convert to PIL | |
image = self.numpy_to_pil(image) | |
else: | |
# 8. Post-processing | |
image = self.decode_latents(latents) | |
# 9. Run safety checker | |
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
has_nsfw_concept = False | |
# Offload last model to CPU | |
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def generate(self, params): | |
params["output_type"] = "latent" | |
ori_latents = self.__call__(**params)["images"] | |
with torch.no_grad(): | |
latents = torch.clone(ori_latents) | |
image = self.decode_latents(latents) | |
image = self.numpy_to_pil(image)[0] | |
return image, ori_latents |