File size: 9,276 Bytes
2b4e6ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import torch
import math
import numpy as np
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, UniPCMultistepScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from typing import Union, Optional, List, Callable, Dict, Any, Tuple
from momentum_scheduler import (
    GHVBScheduler,
    PLMSWithHBScheduler,
    PLMSWithNTScheduler,
    MomentumDPMSolverMultistepScheduler,
    MomentumUniPCMultistepScheduler,
)

available_solvers = {
    "GHVB": GHVBScheduler,
    "PLMS_HB": PLMSWithHBScheduler,
    "PLMS_NT": PLMSWithNTScheduler,
    "DPM-Solver++": MomentumDPMSolverMultistepScheduler,
    "UniPC": MomentumUniPCMultistepScheduler,
}

def get_momentum_number(order, beta):
    out = order if beta == 1.0 else order - (1 - beta)
    return out

def setup_scheduler(pipe, scheduler, momentum_type="Polyak's heavy ball", order=4.0, beta=1.0, original_config=None):
    assert original_config is not None
    
    if scheduler in ["DPM-Solver++", "UniPC"]:
        if momentum_type in ["Nesterov"]:
            raise NotImplementedError(f"{scheduler} w/ Nesterov is not implemented.")

        pipe.scheduler = available_solvers[scheduler].from_config(original_config)
        pipe.scheduler.initialize_momentum(beta=beta)

    elif scheduler in ["PLMS"]:
        momentum_number = get_momentum_number(order, beta)
        method = "PLMS_HB" if momentum_type == "Polyak's heavy ball" else "PLMS_NT"
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config)
        pipe.init_scheduler(method=method, order=momentum_number)
        pipe.clear_scheduler()

    elif scheduler in ["GHVB"]:
        momentum_number = get_momentum_number(order, beta)
        pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config)
        pipe.init_scheduler(method="GHVB", order=momentum_number)
        pipe.clear_scheduler()

    return pipe

class CustomPipeline(StableDiffusionPipeline):
    def clear_scheduler(self):
        self.scheduler_uncond.clear()
        self.scheduler_text.clear()
    
    def init_scheduler(self, method, order):
        # equivalent to not applied numerical operator splitting since orders are the same
        self.scheduler_uncond = available_solvers[method](self.scheduler, order)
        self.scheduler_text = available_solvers[method](self.scheduler, order)

    def get_noise(self, latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance):
        # expand the latents if we are doing classifier free guidance
        latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
        latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

        # predict the noise residual
        noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample

        if do_classifier_free_guidance:
            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
            grads_a = guidance_scale * (noise_pred_text - noise_pred_uncond)

        return noise_pred_uncond, grads_a

    def denoising_step(
            self,
            latents,
            prompt_embeds,
            guidance_scale,
            t,
            do_classifier_free_guidance,
            method,
            extra_step_kwargs,
    ):
        noise_pred_uncond, grads_a = self.get_noise(
            latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance
        )
        if method in ["dpm", "unipc"]:
            latents = self.scheduler.step(noise_pred_uncond + grads_a, t, latents, **extra_step_kwargs).prev_sample
        
        elif method in ["hb", "ghvb", "nt"]:
            latents = self.scheduler_uncond.step(noise_pred_uncond, t, latents, output_mode="scale")
            latents = self.scheduler_text.step(grads_a, t, latents, output_mode='back')
        else:
            raise NotImplementedError

        return latents

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        method="ghvb",
    ):
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        prompt_embeds = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps = self.scheduler.timesteps
        # print(timesteps)

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                latents = self.denoising_step(
                    latents,
                    prompt_embeds,
                    guidance_scale,
                    t,
                    do_classifier_free_guidance,
                    method,
                    extra_step_kwargs,
                )

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            # image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
            has_nsfw_concept = False

            # 10. Convert to PIL
            image = self.numpy_to_pil(image)
        else:
            # 8. Post-processing
            image = self.decode_latents(latents)

            # 9. Run safety checker
            # image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
            has_nsfw_concept = False

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def generate(self, params):
        params["output_type"] = "latent"
        ori_latents = self.__call__(**params)["images"]

        with torch.no_grad():
            latents = torch.clone(ori_latents)
            image = self.decode_latents(latents)
            image = self.numpy_to_pil(image)[0]

        return image, ori_latents