Spaces:
Runtime error
Runtime error
File size: 9,276 Bytes
2b4e6ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import torch
import math
import numpy as np
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler, UniPCMultistepScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from typing import Union, Optional, List, Callable, Dict, Any, Tuple
from momentum_scheduler import (
GHVBScheduler,
PLMSWithHBScheduler,
PLMSWithNTScheduler,
MomentumDPMSolverMultistepScheduler,
MomentumUniPCMultistepScheduler,
)
available_solvers = {
"GHVB": GHVBScheduler,
"PLMS_HB": PLMSWithHBScheduler,
"PLMS_NT": PLMSWithNTScheduler,
"DPM-Solver++": MomentumDPMSolverMultistepScheduler,
"UniPC": MomentumUniPCMultistepScheduler,
}
def get_momentum_number(order, beta):
out = order if beta == 1.0 else order - (1 - beta)
return out
def setup_scheduler(pipe, scheduler, momentum_type="Polyak's heavy ball", order=4.0, beta=1.0, original_config=None):
assert original_config is not None
if scheduler in ["DPM-Solver++", "UniPC"]:
if momentum_type in ["Nesterov"]:
raise NotImplementedError(f"{scheduler} w/ Nesterov is not implemented.")
pipe.scheduler = available_solvers[scheduler].from_config(original_config)
pipe.scheduler.initialize_momentum(beta=beta)
elif scheduler in ["PLMS"]:
momentum_number = get_momentum_number(order, beta)
method = "PLMS_HB" if momentum_type == "Polyak's heavy ball" else "PLMS_NT"
pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config)
pipe.init_scheduler(method=method, order=momentum_number)
pipe.clear_scheduler()
elif scheduler in ["GHVB"]:
momentum_number = get_momentum_number(order, beta)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(original_config)
pipe.init_scheduler(method="GHVB", order=momentum_number)
pipe.clear_scheduler()
return pipe
class CustomPipeline(StableDiffusionPipeline):
def clear_scheduler(self):
self.scheduler_uncond.clear()
self.scheduler_text.clear()
def init_scheduler(self, method, order):
# equivalent to not applied numerical operator splitting since orders are the same
self.scheduler_uncond = available_solvers[method](self.scheduler, order)
self.scheduler_text = available_solvers[method](self.scheduler, order)
def get_noise(self, latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
grads_a = guidance_scale * (noise_pred_text - noise_pred_uncond)
return noise_pred_uncond, grads_a
def denoising_step(
self,
latents,
prompt_embeds,
guidance_scale,
t,
do_classifier_free_guidance,
method,
extra_step_kwargs,
):
noise_pred_uncond, grads_a = self.get_noise(
latents, prompt_embeds, guidance_scale, t, do_classifier_free_guidance
)
if method in ["dpm", "unipc"]:
latents = self.scheduler.step(noise_pred_uncond + grads_a, t, latents, **extra_step_kwargs).prev_sample
elif method in ["hb", "ghvb", "nt"]:
latents = self.scheduler_uncond.step(noise_pred_uncond, t, latents, output_mode="scale")
latents = self.scheduler_text.step(grads_a, t, latents, output_mode='back')
else:
raise NotImplementedError
return latents
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
method="ghvb",
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds = self._encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# print(timesteps)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
latents = self.denoising_step(
latents,
prompt_embeds,
guidance_scale,
t,
do_classifier_free_guidance,
method,
extra_step_kwargs,
)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
if output_type == "latent":
image = latents
has_nsfw_concept = None
elif output_type == "pil":
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
has_nsfw_concept = False
# 10. Convert to PIL
image = self.numpy_to_pil(image)
else:
# 8. Post-processing
image = self.decode_latents(latents)
# 9. Run safety checker
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
has_nsfw_concept = False
# Offload last model to CPU
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def generate(self, params):
params["output_type"] = "latent"
ori_latents = self.__call__(**params)["images"]
with torch.no_grad():
latents = torch.clone(ori_latents)
image = self.decode_latents(latents)
image = self.numpy_to_pil(image)[0]
return image, ori_latents |